Models, code, and papers for "Yapeng Tian":

CFSNet: Toward a Controllable Feature Space for Image Restoration

Apr 01, 2019
Wei Wang, Ruiming Guo, Yapeng Tian, Wenming Yang

Deep learning methods have witnessed the great progress in image restoration with specific metrics (e.g., PSNR, SSIM). However, the perceptual quality of the restored image is relatively subjective, and it is necessary for users to control the reconstruction result according to personal preferences or image characteristics, which cannot be done using existing deterministic networks. This motivates us to exquisitely design a unified interactive framework for general image restoration tasks. Under this framework, users can control continuous transition of different objectives, e.g., the perception-distortion trade-off of image super-resolution, the trade-off between noise reduction and detail preservation. We achieve this goal by controlling latent features of the designed network. To be specific, our proposed framework, named Controllable Feature Space Network (CFSNet), is entangled by two branches based on different objectives. Our model can adaptively learn the coupling coefficients of different layers and channels, which provides finer control of the restored image quality. Experiments on several typical image restoration tasks fully validate the effective benefits of the proposed method.


  Click for Model/Code and Paper
TDAN: Temporally Deformable Alignment Network for Video Super-Resolution

Dec 07, 2018
Yapeng Tian, Yulun Zhang, Yun Fu, Chenliang Xu

Video super-resolution (VSR) aims to restore a photo-realistic high-resolution (HR) video frame from both its corresponding low-resolution (LR) frame (reference frame) and multiple neighboring frames (supporting frames). Due to varying motion of cameras or objects, the reference frame and each support frame are not aligned. Therefore, temporal alignment is a challenging yet important problem for VSR. Previous VSR methods usually utilize optical flow between the reference frame and each supporting frame to wrap the supporting frame for temporal alignment. Therefore, the performance of these image-level wrapping-based models will highly depend on the prediction accuracy of optical flow, and inaccurate optical flow will lead to artifacts in the wrapped supporting frames, which also will be propagated into the reconstructed HR video frame. To overcome the limitation, in this paper, we propose a temporal deformable alignment network (TDAN) to adaptively align the reference frame and each supporting frame at the feature level without computing optical flow. The TDAN uses features from both the reference frame and each supporting frame to dynamically predict offsets of sampling convolution kernels. By using the corresponding kernels, TDAN transforms supporting frames to align with the reference frame. To predict the HR video frame, a reconstruction network taking aligned frames and the reference frame is utilized. Experimental results demonstrate the effectiveness of the proposed TDAN-based VSR model.

* 10 pages, 6 figures, demo link http://www.youtube.com/watch?v=eZExENE50I0 

  Click for Model/Code and Paper
Residual Dense Network for Image Restoration

Dec 25, 2018
Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, Yun Fu

Convolutional neural network has recently achieved great success for image restoration (IR) and also offered hierarchical features. However, most deep CNN based IR models do not make full use of the hierarchical features from the original low-quality images, thereby achieving relatively-low performance. In this paper, we propose a novel residual dense network (RDN) to address this problem in IR. We fully exploit the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via densely connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory mechanism. To adaptively learn more effective features from preceding and current local features and stabilize the training of wider network, we proposed local feature fusion in RDB. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. We demonstrate the effectiveness of RDN with three representative IR applications, single image super-resolution, Gaussian image denoising, and image compression artifact reduction. Experiments on benchmark datasets show that our RDN achieves favorable performance against state-of-the-art methods for each IR task.

* 14 pages, 14 figures. arXiv admin note: substantial text overlap with arXiv:1802.08797 

  Click for Model/Code and Paper
An Attempt towards Interpretable Audio-Visual Video Captioning

Dec 07, 2018
Yapeng Tian, Chenxiao Guan, Justin Goodman, Marc Moore, Chenliang Xu

Automatically generating a natural language sentence to describe the content of an input video is a very challenging problem. It is an essential multimodal task in which auditory and visual contents are equally important. Although audio information has been exploited to improve video captioning in previous works, it is usually regarded as an additional feature fed into a black box fusion machine. How are the words in the generated sentences associated with the auditory and visual modalities? The problem is still not investigated. In this paper, we make the first attempt to design an interpretable audio-visual video captioning network to discover the association between words in sentences and audio-visual sequences. To achieve this, we propose a multimodal convolutional neural network-based audio-visual video captioning framework and introduce a modality-aware module for exploring modality selection during sentence generation. Besides, we collect new audio captioning and visual captioning datasets for further exploring the interactions between auditory and visual modalities for high-level video understanding. Extensive experiments demonstrate that the modality-aware module makes our model interpretable on modality selection during sentence generation. Even with the added interpretability, our video captioning network can still achieve comparable performance with recent state-of-the-art methods.

* 11 pages, 4 figures 

  Click for Model/Code and Paper
Residual Dense Network for Image Super-Resolution

Mar 27, 2018
Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, Yun Fu

A very deep convolutional neural network (CNN) has recently achieved great success for image super-resolution (SR) and offered hierarchical features as well. However, most deep CNN based SR models do not make full use of the hierarchical features from the original low-resolution (LR) images, thereby achieving relatively-low performance. In this paper, we propose a novel residual dense network (RDN) to address this problem in image SR. We fully exploit the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via dense connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory (CM) mechanism. Local feature fusion in RDB is then used to adaptively learn more effective features from preceding and current local features and stabilizes the training of wider network. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. Extensive experiments on benchmark datasets with different degradation models show that our RDN achieves favorable performance against state-of-the-art methods.

* To appear in CVPR 2018 as spotlight 

  Click for Model/Code and Paper
Audio-Visual Event Localization in Unconstrained Videos

Mar 23, 2018
Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, Chenliang Xu

In this paper, we introduce a novel problem of audio-visual event localization in unconstrained videos. We define an audio-visual event as an event that is both visible and audible in a video segment. We collect an Audio-Visual Event(AVE) dataset to systemically investigate three temporal localization tasks: supervised and weakly-supervised audio-visual event localization, and cross-modality localization. We develop an audio-guided visual attention mechanism to explore audio-visual correlations, propose a dual multimodal residual network (DMRN) to fuse information over the two modalities, and introduce an audio-visual distance learning network to handle the cross-modality localization. Our experiments support the following findings: joint modeling of auditory and visual modalities outperforms independent modeling, the learned attention can capture semantics of sounding objects, temporal alignment is important for audio-visual fusion, the proposed DMRN is effective in fusing audio-visual features, and strong correlations between the two modalities enable cross-modality localization.

* 23 pages, 7 figures 

  Click for Model/Code and Paper
Deep Learning for Single Image Super-Resolution: A Brief Review

Aug 09, 2018
Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang, Jing-Hao Xue

Single image super-resolution (SISR) is a notoriously challenging ill-posed problem, which aims to obtain a high- resolution (HR) output from one of its low-resolution (LR) versions. To solve the SISR problem, recently powerful deep learning algorithms have been employed and achieved the state- of-the-art performance. In this survey, we review representative deep learning-based SISR methods, and group them into two categories according to their major contributions to two essential aspects of SISR: the exploration of efficient neural network archi- tectures for SISR, and the development of effective optimization objectives for deep SISR learning. For each category, a baseline is firstly established and several critical limitations of the baseline are summarized. Then representative works on overcoming these limitations are presented based on their original contents as well as our critical understandings and analyses, and relevant comparisons are conducted from a variety of perspectives. Finally we conclude this review with some vital current challenges and future trends in SISR leveraging deep learning algorithms.


  Click for Model/Code and Paper
LCSCNet: Linear Compressing Based Skip-Connecting Network for Image Super-Resolution

Sep 09, 2019
Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang, Jing-Hao Xue, Qingmin Liao

In this paper, we develop a concise but efficient network architecture called linear compressing based skip-connecting network (LCSCNet) for image super-resolution. Compared with two representative network architectures with skip connections, ResNet and DenseNet, a linear compressing layer is designed in LCSCNet for skip connection, which connects former feature maps and distinguishes them from newly-explored feature maps. In this way, the proposed LCSCNet enjoys the merits of the distinguish feature treatment of DenseNet and the parameter-economic form of ResNet. Moreover, to better exploit hierarchical information from both low and high levels of various receptive fields in deep models, inspired by gate units in LSTM, we also propose an adaptive element-wise fusion strategy with multi-supervised training. Experimental results in comparison with state-of-the-art algorithms validate the effectiveness of LCSCNet.

* Accepted by IEEE Transactions on Image Processing (IEEE-TIP) 

  Click for Model/Code and Paper