Models, code, and papers for "Yelong Shen":

Stochastic Answer Networks for Machine Reading Comprehension

May 15, 2018
Xiaodong Liu, Yelong Shen, Kevin Duh, Jianfeng Gao

We propose a simple yet robust stochastic answer network (SAN) that simulates multi-step reasoning in machine reading comprehension. Compared to previous work such as ReasoNet which used reinforcement learning to determine the number of steps, the unique feature is the use of a kind of stochastic prediction dropout on the answer module (final layer) of the neural network during the training. We show that this simple trick improves robustness and achieves results competitive to the state-of-the-art on the Stanford Question Answering Dataset (SQuAD), the Adversarial SQuAD, and the Microsoft MAchine Reading COmprehension Dataset (MS MARCO).

* 11 pages, 5 figures, Accepted to ACL 2018 

  Click for Model/Code and Paper
An Empirical Analysis of Multiple-Turn Reasoning Strategies in Reading Comprehension Tasks

Nov 09, 2017
Yelong Shen, Xiaodong Liu, Kevin Duh, Jianfeng Gao

Reading comprehension (RC) is a challenging task that requires synthesis of information across sentences and multiple turns of reasoning. Using a state-of-the-art RC model, we empirically investigate the performance of single-turn and multiple-turn reasoning on the SQuAD and MS MARCO datasets. The RC model is an end-to-end neural network with iterative attention, and uses reinforcement learning to dynamically control the number of turns. We find that multiple-turn reasoning outperforms single-turn reasoning for all question and answer types; further, we observe that enabling a flexible number of turns generally improves upon a fixed multiple-turn strategy. %across all question types, and is particularly beneficial to questions with lengthy, descriptive answers. We achieve results competitive to the state-of-the-art on these two datasets.

  Click for Model/Code and Paper
Multi-Task Learning for Machine Reading Comprehension

Sep 18, 2018
Yichong Xu, Xiaodong Liu, Yelong Shen, Jingjing Liu, Jianfeng Gao

We propose a multi-task learning framework to jointly train a Machine Reading Comprehension (MRC) model on multiple datasets across different domains. Key to the proposed method is to learn robust and general contextual representations with the help of out-domain data in a multi-task framework. Empirical study shows that the proposed approach is orthogonal to the existing pre-trained representation models, such as word embedding and language models. Experiments on the Stanford Question Answering Dataset (SQuAD), the Microsoft MAchine Reading COmprehension Dataset (MS MARCO), NewsQA and other datasets show that our multi-task learning approach achieves significant improvement over state-of-the-art models in most MRC tasks.

* 9 pages, 2 figures, 7 tables 

  Click for Model/Code and Paper
Language-Based Image Editing with Recurrent Attentive Models

Jun 10, 2018
Jianbo Chen, Yelong Shen, Jianfeng Gao, Jingjing Liu, Xiaodong Liu

We investigate the problem of Language-Based Image Editing (LBIE). Given a source image and a natural language description, we want to generate a target image by editing the source image based on the description. We propose a generic modeling framework for two sub-tasks of LBIE: language-based image segmentation and image colorization. The framework uses recurrent attentive models to fuse image and language features. Instead of using a fixed step size, we introduce for each region of the image a termination gate to dynamically determine after each inference step whether to continue extrapolating additional information from the textual description. The effectiveness of the framework is validated on three datasets. First, we introduce a synthetic dataset, called CoSaL, to evaluate the end-to-end performance of our LBIE system. Second, we show that the framework leads to state-of-the-art performance on image segmentation on the ReferIt dataset. Third, we present the first language-based colorization result on the Oxford-102 Flowers dataset.

* Accepted to CVPR 2018 as a Spotlight 

  Click for Model/Code and Paper
Dynamic Fusion Networks for Machine Reading Comprehension

Feb 26, 2018
Yichong Xu, Jingjing Liu, Jianfeng Gao, Yelong Shen, Xiaodong Liu

This paper presents a novel neural model - Dynamic Fusion Network (DFN), for machine reading comprehension (MRC). DFNs differ from most state-of-the-art models in their use of a dynamic multi-strategy attention process, in which passages, questions and answer candidates are jointly fused into attention vectors, along with a dynamic multi-step reasoning module for generating answers. With the use of reinforcement learning, for each input sample that consists of a question, a passage and a list of candidate answers, an instance of DFN with a sample-specific network architecture can be dynamically constructed by determining what attention strategy to apply and how many reasoning steps to take. Experiments show that DFNs achieve the best result reported on RACE, a challenging MRC dataset that contains real human reading questions in a wide variety of types. A detailed empirical analysis also demonstrates that DFNs can produce attention vectors that summarize information from questions, passages and answer candidates more effectively than other popular MRC models.

* 13 pages, 5 figures, 5 tables 

  Click for Model/Code and Paper
FusionNet: Fusing via Fully-Aware Attention with Application to Machine Comprehension

Feb 04, 2018
Hsin-Yuan Huang, Chenguang Zhu, Yelong Shen, Weizhu Chen

This paper introduces a new neural structure called FusionNet, which extends existing attention approaches from three perspectives. First, it puts forward a novel concept of "history of word" to characterize attention information from the lowest word-level embedding up to the highest semantic-level representation. Second, it introduces an improved attention scoring function that better utilizes the "history of word" concept. Third, it proposes a fully-aware multi-level attention mechanism to capture the complete information in one text (such as a question) and exploit it in its counterpart (such as context or passage) layer by layer. We apply FusionNet to the Stanford Question Answering Dataset (SQuAD) and it achieves the first position for both single and ensemble model on the official SQuAD leaderboard at the time of writing (Oct. 4th, 2017). Meanwhile, we verify the generalization of FusionNet with two adversarial SQuAD datasets and it sets up the new state-of-the-art on both datasets: on AddSent, FusionNet increases the best F1 metric from 46.6% to 51.4%; on AddOneSent, FusionNet boosts the best F1 metric from 56.0% to 60.7%.

* Published in Sixth International Conference on Learning Representations (ICLR), 2018 

  Click for Model/Code and Paper
ReasoNet: Learning to Stop Reading in Machine Comprehension

Jun 20, 2017
Yelong Shen, Po-Sen Huang, Jianfeng Gao, Weizhu Chen

Teaching a computer to read and answer general questions pertaining to a document is a challenging yet unsolved problem. In this paper, we describe a novel neural network architecture called the Reasoning Network (ReasoNet) for machine comprehension tasks. ReasoNets make use of multiple turns to effectively exploit and then reason over the relation among queries, documents, and answers. Different from previous approaches using a fixed number of turns during inference, ReasoNets introduce a termination state to relax this constraint on the reasoning depth. With the use of reinforcement learning, ReasoNets can dynamically determine whether to continue the comprehension process after digesting intermediate results, or to terminate reading when it concludes that existing information is adequate to produce an answer. ReasoNets have achieved exceptional performance in machine comprehension datasets, including unstructured CNN and Daily Mail datasets, the Stanford SQuAD dataset, and a structured Graph Reachability dataset.

* in KDD 2017 

  Click for Model/Code and Paper
Link Prediction using Embedded Knowledge Graphs

Apr 22, 2018
Yelong Shen, Po-Sen Huang, Ming-Wei Chang, Jianfeng Gao

Since large knowledge bases are typically incomplete, missing facts need to be inferred from observed facts in a task called knowledge base completion. The most successful approaches to this task have typically explored explicit paths through sequences of triples. These approaches have usually resorted to human-designed sampling procedures, since large knowledge graphs produce prohibitively large numbers of possible paths, most of which are uninformative. As an alternative approach, we propose performing a single, short sequence of interactive lookup operations on an embedded knowledge graph which has been trained through end-to-end backpropagation to be an optimized and compressed version of the initial knowledge base. Our proposed model, called Embedded Knowledge Graph Network (EKGN), achieves new state-of-the-art results on popular knowledge base completion benchmarks.

  Click for Model/Code and Paper
M-Walk: Learning to Walk over Graphs using Monte Carlo Tree Search

Nov 01, 2018
Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, Jianfeng Gao

Learning to walk over a graph towards a target node for a given query and a source node is an important problem in applications such as knowledge base completion (KBC). It can be formulated as a reinforcement learning (RL) problem with a known state transition model. To overcome the challenge of sparse rewards, we develop a graph-walking agent called M-Walk, which consists of a deep recurrent neural network (RNN) and Monte Carlo Tree Search (MCTS). The RNN encodes the state (i.e., history of the walked path) and maps it separately to a policy and Q-values. In order to effectively train the agent from sparse rewards, we combine MCTS with the neural policy to generate trajectories yielding more positive rewards. From these trajectories, the network is improved in an off-policy manner using Q-learning, which modifies the RNN policy via parameter sharing. Our proposed RL algorithm repeatedly applies this policy-improvement step to learn the model. At test time, MCTS is combined with the neural policy to predict the target node. Experimental results on several graph-walking benchmarks show that M-Walk is able to learn better policies than other RL-based methods, which are mainly based on policy gradients. M-Walk also outperforms traditional KBC baselines.

* Yelong Shen, Jianshu Chen and Po-Sen Huang contributed equally to the paper. Published at NIPS 2018 

  Click for Model/Code and Paper
A Deep Embedding Model for Co-occurrence Learning

Jun 04, 2015
Yelong Shen, Ruoming Jin, Jianshu Chen, Xiaodong He, Jianfeng Gao, Li Deng

Co-occurrence Data is a common and important information source in many areas, such as the word co-occurrence in the sentences, friends co-occurrence in social networks and products co-occurrence in commercial transaction data, etc, which contains rich correlation and clustering information about the items. In this paper, we study co-occurrence data using a general energy-based probabilistic model, and we analyze three different categories of energy-based model, namely, the $L_1$, $L_2$ and $L_k$ models, which are able to capture different levels of dependency in the co-occurrence data. We also discuss how several typical existing models are related to these three types of energy models, including the Fully Visible Boltzmann Machine (FVBM) ($L_2$), Matrix Factorization ($L_2$), Log-BiLinear (LBL) models ($L_2$), and the Restricted Boltzmann Machine (RBM) model ($L_k$). Then, we propose a Deep Embedding Model (DEM) (an $L_k$ model) from the energy model in a \emph{principled} manner. Furthermore, motivated by the observation that the partition function in the energy model is intractable and the fact that the major objective of modeling the co-occurrence data is to predict using the conditional probability, we apply the \emph{maximum pseudo-likelihood} method to learn DEM. In consequence, the developed model and its learning method naturally avoid the above difficulties and can be easily used to compute the conditional probability in prediction. Interestingly, our method is equivalent to learning a special structured deep neural network using back-propagation and a special sampling strategy, which makes it scalable on large-scale datasets. Finally, in the experiments, we show that the DEM can achieve comparable or better results than state-of-the-art methods on datasets across several application domains.

  Click for Model/Code and Paper
Unsupervised Deep Structured Semantic Models for Commonsense Reasoning

Apr 03, 2019
Shuohang Wang, Sheng Zhang, Yelong Shen, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, Jing Jiang

Commonsense reasoning is fundamental to natural language understanding. While traditional methods rely heavily on human-crafted features and knowledge bases, we explore learning commonsense knowledge from a large amount of raw text via unsupervised learning. We propose two neural network models based on the Deep Structured Semantic Models (DSSM) framework to tackle two classic commonsense reasoning tasks, Winograd Schema challenges (WSC) and Pronoun Disambiguation (PDP). Evaluation shows that the proposed models effectively capture contextual information in the sentence and co-reference information between pronouns and nouns, and achieve significant improvement over previous state-of-the-art approaches.

* To appear in NAACL 2019, 10 pages 

  Click for Model/Code and Paper
End-to-end Learning of LDA by Mirror-Descent Back Propagation over a Deep Architecture

Nov 01, 2015
Jianshu Chen, Ji He, Yelong Shen, Lin Xiao, Xiaodong He, Jianfeng Gao, Xinying Song, Li Deng

We develop a fully discriminative learning approach for supervised Latent Dirichlet Allocation (LDA) model using Back Propagation (i.e., BP-sLDA), which maximizes the posterior probability of the prediction variable given the input document. Different from traditional variational learning or Gibbs sampling approaches, the proposed learning method applies (i) the mirror descent algorithm for maximum a posterior inference and (ii) back propagation over a deep architecture together with stochastic gradient/mirror descent for model parameter estimation, leading to scalable and end-to-end discriminative learning of the model. As a byproduct, we also apply this technique to develop a new learning method for the traditional unsupervised LDA model (i.e., BP-LDA). Experimental results on three real-world regression and classification tasks show that the proposed methods significantly outperform the previous supervised topic models, neural networks, and is on par with deep neural networks.

* Proc. NIPS 2015 

  Click for Model/Code and Paper
Deep Sentence Embedding Using Long Short-Term Memory Networks: Analysis and Application to Information Retrieval

Jan 16, 2016
Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen, Xinying Song, Rabab Ward

This paper develops a model that addresses sentence embedding, a hot topic in current natural language processing research, using recurrent neural networks with Long Short-Term Memory (LSTM) cells. Due to its ability to capture long term memory, the LSTM-RNN accumulates increasingly richer information as it goes through the sentence, and when it reaches the last word, the hidden layer of the network provides a semantic representation of the whole sentence. In this paper, the LSTM-RNN is trained in a weakly supervised manner on user click-through data logged by a commercial web search engine. Visualization and analysis are performed to understand how the embedding process works. The model is found to automatically attenuate the unimportant words and detects the salient keywords in the sentence. Furthermore, these detected keywords are found to automatically activate different cells of the LSTM-RNN, where words belonging to a similar topic activate the same cell. As a semantic representation of the sentence, the embedding vector can be used in many different applications. These automatic keyword detection and topic allocation abilities enabled by the LSTM-RNN allow the network to perform document retrieval, a difficult language processing task, where the similarity between the query and documents can be measured by the distance between their corresponding sentence embedding vectors computed by the LSTM-RNN. On a web search task, the LSTM-RNN embedding is shown to significantly outperform several existing state of the art methods. We emphasize that the proposed model generates sentence embedding vectors that are specially useful for web document retrieval tasks. A comparison with a well known general sentence embedding method, the Paragraph Vector, is performed. The results show that the proposed method in this paper significantly outperforms it for web document retrieval task.

* To appear in IEEE/ACM Transactions on Audio, Speech, and Language Processing 

  Click for Model/Code and Paper
A Hybrid Retrieval-Generation Neural Conversation Model

Apr 19, 2019
Liu Yang, Junjie Hu, Minghui Qiu, Chen Qu, Jianfeng Gao, W. Bruce Croft, Xiaodong Liu, Yelong Shen, Jingjing Liu

Intelligent personal assistant systems, with either text-based or voice-based conversational interfaces, are becoming increasingly popular. Most previous research has used either retrieval-based or generation-based methods. Retrieval-based methods have the advantage of returning fluent and informative responses with great diversity. The retrieved responses are easier to control and explain. However, the response retrieval performance is limited by the size of the response repository. On the other hand, although generation-based methods can return highly coherent responses given conversation context, they are likely to return universal or general responses with insufficient ground knowledge information. In this paper, we build a hybrid neural conversation model with the capability of both response retrieval and generation, in order to combine the merits of these two types of methods. Experimental results on Twitter and Foursquare data show that the proposed model can outperform both retrieval-based methods and generation-based methods (including a recently proposed knowledge-grounded neural conversation model) under both automatic evaluation metrics and human evaluation. Our models and research findings provide new insights on how to integrate text retrieval and text generation models for building conversation systems.

* 11 pages 

  Click for Model/Code and Paper
StoryGAN: A Sequential Conditional GAN for Story Visualization

Dec 06, 2018
Yitong Li, Zhe Gan, Yelong Shen, Jingjing Liu, Yu Cheng, Yuexin Wu, Lawrence Carin, David Carlson, Jianfeng Gao

In this work we propose a new task called Story Visualization. Given a multi-sentence paragraph, the story is visualized by generating a sequence of images, one for each sentence. In contrast to video generation, story visualization focuses less on the continuity in generated images (frames), but more on the global consistency across dynamic scenes and characters -- a challenge that has not been addressed by any single-image or video generation methods. Therefore, we propose a new story-to-image-sequence generation model, StoryGAN, based on the sequential conditional GAN framework. Our model is unique in that it consists of a deep Context Encoder that dynamically tracks the story flow, and two discriminators at the story and image levels, respectively, to enhance the image quality and the consistency of the generated sequences. To evaluate the model, we modified existing datasets to create the CLEVR-SV and Pororo-SV datasets. Empirically, StoryGAN outperformed state-of-the-art models in image quality, contextual consistency metrics, and human evaluation.

  Click for Model/Code and Paper