Models, code, and papers for "Yi-Ling Chen":

Learning to Compose with Professional Photographs on the Web

Jul 18, 2017
Yi-Ling Chen, Jan Klopp, Min Sun, Shao-Yi Chien, Kwan-Liu Ma

Photo composition is an important factor affecting the aesthetics in photography. However, it is a highly challenging task to model the aesthetic properties of good compositions due to the lack of globally applicable rules to the wide variety of photographic styles. Inspired by the thinking process of photo taking, we formulate the photo composition problem as a view finding process which successively examines pairs of views and determines their aesthetic preferences. We further exploit the rich professional photographs on the web to mine unlimited high-quality ranking samples and demonstrate that an aesthetics-aware deep ranking network can be trained without explicitly modeling any photographic rules. The resulting model is simple and effective in terms of its architectural design and data sampling method. It is also generic since it naturally learns any photographic rules implicitly encoded in professional photographs. The experiments show that the proposed view finding network achieves state-of-the-art performance with sliding window search strategy on two image cropping datasets.

* Scripts and pre-trained models available at 

  Click for Model/Code and Paper
Quantitative Analysis of Automatic Image Cropping Algorithms: A Dataset and Comparative Study

Jan 05, 2017
Yi-Ling Chen, Tzu-Wei Huang, Kai-Han Chang, Yu-Chen Tsai, Hwann-Tzong Chen, Bing-Yu Chen

Automatic photo cropping is an important tool for improving visual quality of digital photos without resorting to tedious manual selection. Traditionally, photo cropping is accomplished by determining the best proposal window through visual quality assessment or saliency detection. In essence, the performance of an image cropper highly depends on the ability to correctly rank a number of visually similar proposal windows. Despite the ranking nature of automatic photo cropping, little attention has been paid to learning-to-rank algorithms in tackling such a problem. In this work, we conduct an extensive study on traditional approaches as well as ranking-based croppers trained on various image features. In addition, a new dataset consisting of high quality cropping and pairwise ranking annotations is presented to evaluate the performance of various baselines. The experimental results on the new dataset provide useful insights into the design of better photo cropping algorithms.

* The dataset presented in this article can be found on <a href="">Github</a> 

  Click for Model/Code and Paper
Learning-based Real-time Detection of Intrinsic Reflectional Symmetry

Nov 01, 2019
Yi-Ling Qiao, Lin Gao, Shu-Zhi Liu, Ligang Liu, Yu-Kun Lai, Xilin Chen

Reflectional symmetry is ubiquitous in nature. While extrinsic reflectional symmetry can be easily parametrized and detected, intrinsic symmetry is much harder due to the high solution space. Previous works usually solve this problem by voting or sampling, which suffer from high computational cost and randomness. In this paper, we propose \YL{a} learning-based approach to intrinsic reflectional symmetry detection. Instead of directly finding symmetric point pairs, we parametrize this self-isometry using a functional map matrix, which can be easily computed given the signs of Laplacian eigenfunctions under the symmetric mapping. Therefore, we train a novel deep neural network to predict the sign of each eigenfunction under symmetry, which in addition takes the first few eigenfunctions as intrinsic features to characterize the mesh while avoiding coping with the connectivity explicitly. Our network aims at learning the global property of functions, and consequently converts the problem defined on the manifold to the functional domain. By disentangling the prediction of the matrix into separated basis, our method generalizes well to new shapes and is invariant under perturbation of eigenfunctions. Through extensive experiments, we demonstrate the robustness of our method in challenging cases, including different topology and incomplete shapes with holes. By avoiding random sampling, our learning-based algorithm is over 100 times faster than state-of-the-art methods, and meanwhile, is more robust, achieving higher correspondence accuracy in commonly used metrics.

  Click for Model/Code and Paper
LaplacianNet: Learning on 3D Meshes with Laplacian Encoding and Pooling

Oct 30, 2019
Yi-Ling Qiao, Lin Gao, Jie Yang, Paul L. Rosin, Yu-Kun Lai, Xilin Chen

3D models are commonly used in computer vision and graphics. With the wider availability of mesh data, an efficient and intrinsic deep learning approach to processing 3D meshes is in great need. Unlike images, 3D meshes have irregular connectivity, requiring careful design to capture relations in the data. To utilize the topology information while staying robust under different triangulation, we propose to encode mesh connectivity using Laplacian spectral analysis, along with Mesh Pooling Blocks (MPBs) that can split the surface domain into local pooling patches and aggregate global information among them. We build a mesh hierarchy from fine to coarse using Laplacian spectral clustering, which is flexible under isometric transformation. Inside the MPBs there are pooling layers to collect local information and multi-layer perceptrons to compute vertex features with increasing complexity. To obtain the relationships among different clusters, we introduce a Correlation Net to compute a correlation matrix, which can aggregate the features globally by matrix multiplication with cluster features. Our network architecture is flexible enough to be used on meshes with different numbers of vertices. We conduct several experiments including shape segmentation and classification, and our LaplacianNet outperforms state-of-the-art algorithms for these tasks on ShapeNet and COSEG datasets.

  Click for Model/Code and Paper