Research papers and code for "Yihao Liu":
We propose a simple algorithm to train stochastic neural networks to draw samples from given target distributions for probabilistic inference. Our method is based on iteratively adjusting the neural network parameters so that the output changes along a Stein variational gradient direction (Liu & Wang, 2016) that maximally decreases the KL divergence with the target distribution. Our method works for any target distribution specified by their unnormalized density function, and can train any black-box architectures that are differentiable in terms of the parameters we want to adapt. We demonstrate our method with a number of applications, including variational autoencoder (VAE) with expressive encoders to model complex latent space structures, and hyper-parameter learning of MCMC samplers that allows Bayesian inference to adaptively improve itself when seeing more data.

* Accepted by UAI 2017
Click to Read Paper and Get Code
Variational inference provides a powerful tool for approximate probabilistic in- ference on complex, structured models. Typical variational inference methods, however, require to use inference networks with computationally tractable proba- bility density functions. This largely limits the design and implementation of vari- ational inference methods. We consider wild variational inference methods that do not require tractable density functions on the inference networks, and hence can be applied in more challenging cases. As an example of application, we treat stochastic gradient Langevin dynamics (SGLD) as an inference network, and use our methods to automatically adjust the step sizes of SGLD, yielding significant improvement over the hand-designed step size schemes

Click to Read Paper and Get Code
Value function learning plays a central role in many state-of-the-art reinforcement-learning algorithms. Many popular algorithms like Q-learning do not optimize any objective function, but are fixed-point iterations of some variant of Bellman operator that is not necessarily a contraction. As a result, they may easily lose convergence guarantees, as can be observed in practice. In this paper, we propose a novel loss function, which can be optimized using standard gradient-based methods without risking divergence. The key advantage is that its gradient can be easily approximated using sampled transitions, avoiding the need for double samples required by prior algorithms like residual gradient. Our approach may be combined with general function classes such as neural networks, on either on- or off-policy data, and is shown to work reliably and effectively in several benchmarks.

Click to Read Paper and Get Code
Generative Adversarial Networks (GAN) have demonstrated the potential to recover realistic details for single image super-resolution (SISR). To further improve the visual quality of super-resolved results, PIRM2018-SR Challenge employed perceptual metrics to assess the perceptual quality, such as PI, NIQE, and Ma. However, existing methods cannot directly optimize these indifferentiable perceptual metrics, which are shown to be highly correlated with human ratings. To address the problem, we propose Super-Resolution Generative Adversarial Networks with Ranker (RankSRGAN) to optimize generator in the direction of perceptual metrics. Specifically, we first train a Ranker which can learn the behavior of perceptual metrics and then introduce a novel rank-content loss to optimize the perceptual quality. The most appealing part is that the proposed method can combine the strengths of different SR methods to generate better results. Extensive experiments show that RankSRGAN achieves visually pleasing results and reaches state-of-the-art performance in perceptual metrics. Project page: https://wenlongzhang0724.github.io/Projects/RankSRGAN

* ICCV 2019 (Oral) camera-ready + supplementary; Project page: https://wenlongzhang0724.github.io/Projects/RankSRGAN
Click to Read Paper and Get Code
Policy gradient methods have achieved remarkable successes in solving challenging reinforcement learning problems. However, it still often suffers from the large variance issue on policy gradient estimation, which leads to poor sample efficiency during training. In this work, we propose a control variate method to effectively reduce variance for policy gradient methods. Motivated by the Stein's identity, our method extends the previous control variate methods used in REINFORCE and advantage actor-critic by introducing more general action-dependent baseline functions. Empirical studies show that our method significantly improves the sample efficiency of the state-of-the-art policy gradient approaches.

* The first two authors contributed equally. Author ordering determined by coin flip over a Google Hangout. Accepted by ICLR 2018
Click to Read Paper and Get Code
It is very useful to integrate human knowledge and experience into traditional neural networks for faster learning speed, fewer training samples and better interpretability. However, due to the obscured and indescribable black box model of neural networks, it is very difficult to design its architecture, interpret its features and predict its performance. Inspired by human visual cognition process, we propose a knowledge-guided semantic computing network which includes two modules: a knowledge-guided semantic tree and a data-driven neural network. The semantic tree is pre-defined to describe the spatial structural relations of different semantics, which just corresponds to the tree-like description of objects based on human knowledge. The object recognition process through the semantic tree only needs simple forward computing without training. Besides, to enhance the recognition ability of the semantic tree in aspects of the diversity, randomicity and variability, we use the traditional neural network to aid the semantic tree to learn some indescribable features. Only in this case, the training process is needed. The experimental results on MNIST and GTSRB datasets show that compared with the traditional data-driven network, our proposed semantic computing network can achieve better performance with fewer training samples and lower computational complexity. Especially, Our model also has better adversarial robustness than traditional neural network with the help of human knowledge.

* 13 pages, 13 figures
Click to Read Paper and Get Code
The Super-Resolution Generative Adversarial Network (SRGAN) is a seminal work that is capable of generating realistic textures during single image super-resolution. However, the hallucinated details are often accompanied with unpleasant artifacts. To further enhance the visual quality, we thoroughly study three key components of SRGAN - network architecture, adversarial loss and perceptual loss, and improve each of them to derive an Enhanced SRGAN (ESRGAN). In particular, we introduce the Residual-in-Residual Dense Block (RRDB) without batch normalization as the basic network building unit. Moreover, we borrow the idea from relativistic GAN to let the discriminator predict relative realness instead of the absolute value. Finally, we improve the perceptual loss by using the features before activation, which could provide stronger supervision for brightness consistency and texture recovery. Benefiting from these improvements, the proposed ESRGAN achieves consistently better visual quality with more realistic and natural textures than SRGAN and won the first place in the PIRM2018-SR Challenge. The code is available at https://github.com/xinntao/ESRGAN .

* To appear in ECCV 2018 workshop. Won Region 3 in the PIRM2018-SR Challenge. Code and models are at https://github.com/xinntao/ESRGAN
Click to Read Paper and Get Code