Models, code, and papers for "Yihao Liu":

Learning to Draw Samples with Amortized Stein Variational Gradient Descent

Oct 30, 2017
Yihao Feng, Dilin Wang, Qiang Liu

We propose a simple algorithm to train stochastic neural networks to draw samples from given target distributions for probabilistic inference. Our method is based on iteratively adjusting the neural network parameters so that the output changes along a Stein variational gradient direction (Liu & Wang, 2016) that maximally decreases the KL divergence with the target distribution. Our method works for any target distribution specified by their unnormalized density function, and can train any black-box architectures that are differentiable in terms of the parameters we want to adapt. We demonstrate our method with a number of applications, including variational autoencoder (VAE) with expressive encoders to model complex latent space structures, and hyper-parameter learning of MCMC samplers that allows Bayesian inference to adaptively improve itself when seeing more data.

* Accepted by UAI 2017 

  Click for Model/Code and Paper
Doubly Robust Bias Reduction in Infinite Horizon Off-Policy Estimation

Oct 16, 2019
Ziyang Tang, Yihao Feng, Lihong Li, Dengyong Zhou, Qiang Liu

Infinite horizon off-policy policy evaluation is a highly challenging task due to the excessively large variance of typical importance sampling (IS) estimators. Recently, Liu et al. (2018a) proposed an approach that significantly reduces the variance of infinite-horizon off-policy evaluation by estimating the stationary density ratio, but at the cost of introducing potentially high biases due to the error in density ratio estimation. In this paper, we develop a bias-reduced augmentation of their method, which can take advantage of a learned value function to obtain higher accuracy. Our method is doubly robust in that the bias vanishes when either the density ratio or the value function estimation is perfect. In general, when either of them is accurate, the bias can also be reduced. Both theoretical and empirical results show that our method yields significant advantages over previous methods.

  Click for Model/Code and Paper
Two Methods For Wild Variational Inference

Oct 30, 2017
Qiang Liu, Yihao Feng

Variational inference provides a powerful tool for approximate probabilistic in- ference on complex, structured models. Typical variational inference methods, however, require to use inference networks with computationally tractable proba- bility density functions. This largely limits the design and implementation of vari- ational inference methods. We consider wild variational inference methods that do not require tractable density functions on the inference networks, and hence can be applied in more challenging cases. As an example of application, we treat stochastic gradient Langevin dynamics (SGLD) as an inference network, and use our methods to automatically adjust the step sizes of SGLD, yielding significant improvement over the hand-designed step size schemes

  Click for Model/Code and Paper
A Kernel Loss for Solving the Bellman Equation

May 25, 2019
Yihao Feng, Lihong Li, Qiang Liu

Value function learning plays a central role in many state-of-the-art reinforcement-learning algorithms. Many popular algorithms like Q-learning do not optimize any objective function, but are fixed-point iterations of some variant of Bellman operator that is not necessarily a contraction. As a result, they may easily lose convergence guarantees, as can be observed in practice. In this paper, we propose a novel loss function, which can be optimized using standard gradient-based methods without risking divergence. The key advantage is that its gradient can be easily approximated using sampled transitions, avoiding the need for double samples required by prior algorithms like residual gradient. Our approach may be combined with general function classes such as neural networks, on either on- or off-policy data, and is shown to work reliably and effectively in several benchmarks.

  Click for Model/Code and Paper
FD-GAN: Generative Adversarial Networks with Fusion-discriminator for Single Image Dehazing

Jan 20, 2020
Yu Dong, Yihao Liu, He Zhang, Shifeng Chen, Yu Qiao

Recently, convolutional neural networks (CNNs) have achieved great improvements in single image dehazing and attained much attention in research. Most existing learning-based dehazing methods are not fully end-to-end, which still follow the traditional dehazing procedure: first estimate the medium transmission and the atmospheric light, then recover the haze-free image based on the atmospheric scattering model. However, in practice, due to lack of priors and constraints, it is hard to precisely estimate these intermediate parameters. Inaccurate estimation further degrades the performance of dehazing, resulting in artifacts, color distortion and insufficient haze removal. To address this, we propose a fully end-to-end Generative Adversarial Networks with Fusion-discriminator (FD-GAN) for image dehazing. With the proposed Fusion-discriminator which takes frequency information as additional priors, our model can generator more natural and realistic dehazed images with less color distortion and fewer artifacts. Moreover, we synthesize a large-scale training dataset including various indoor and outdoor hazy images to boost the performance and we reveal that for learning-based dehazing methods, the performance is strictly influenced by the training data. Experiments have shown that our method reaches state-of-the-art performance on both public synthetic datasets and real-world images with more visually pleasing dehazed results.

* Accepted by AAAI2020 (with supplementary files) 

  Click for Model/Code and Paper
RankSRGAN: Generative Adversarial Networks with Ranker for Image Super-Resolution

Aug 26, 2019
Wenlong Zhang, Yihao Liu, Chao Dong, Yu Qiao

Generative Adversarial Networks (GAN) have demonstrated the potential to recover realistic details for single image super-resolution (SISR). To further improve the visual quality of super-resolved results, PIRM2018-SR Challenge employed perceptual metrics to assess the perceptual quality, such as PI, NIQE, and Ma. However, existing methods cannot directly optimize these indifferentiable perceptual metrics, which are shown to be highly correlated with human ratings. To address the problem, we propose Super-Resolution Generative Adversarial Networks with Ranker (RankSRGAN) to optimize generator in the direction of perceptual metrics. Specifically, we first train a Ranker which can learn the behavior of perceptual metrics and then introduce a novel rank-content loss to optimize the perceptual quality. The most appealing part is that the proposed method can combine the strengths of different SR methods to generate better results. Extensive experiments show that RankSRGAN achieves visually pleasing results and reaches state-of-the-art performance in perceptual metrics. Project page:

* ICCV 2019 (Oral) camera-ready + supplementary; Project page: 

  Click for Model/Code and Paper
Action-depedent Control Variates for Policy Optimization via Stein's Identity

Feb 23, 2018
Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, Qiang Liu

Policy gradient methods have achieved remarkable successes in solving challenging reinforcement learning problems. However, it still often suffers from the large variance issue on policy gradient estimation, which leads to poor sample efficiency during training. In this work, we propose a control variate method to effectively reduce variance for policy gradient methods. Motivated by the Stein's identity, our method extends the previous control variate methods used in REINFORCE and advantage actor-critic by introducing more general action-dependent baseline functions. Empirical studies show that our method significantly improves the sample efficiency of the state-of-the-art policy gradient approaches.

* The first two authors contributed equally. Author ordering determined by coin flip over a Google Hangout. Accepted by ICLR 2018 

  Click for Model/Code and Paper
Amora: Black-box Adversarial Morphing Attack

Dec 09, 2019
Run Wang, Felix Juefei-Xu, Xiaofei Xie, Lei Ma, Yihao Huang, Yang Liu

Nowadays, digital facial content manipulation has become ubiquitous and realistic with the unprecedented success of generative adversarial networks (GANs) in image synthesis. Unfortunately, face recognition (FR) systems suffer from severe security concerns due to facial image manipulations. In this paper, we investigate and introduce a new type of adversarial attack to evade FR systems by manipulating facial content, called adversarial morphing attack (a.k.a. Amora). In contrast to adversarial noise attack that perturbs pixel intensity values by adding human-imperceptible noise, our proposed adversarial morphing attack is a semantic attack that perturbs pixels spatially in a coherent manner. To tackle the black-box attack problem, we have devised a simple yet effective learning pipeline to obtain a proprietary optical flow field for each attack. We have quantitatively and qualitatively demonstrated the effectiveness of our adversarial morphing attack at various levels of morphing intensity on two popular FR systems with smiling facial expression manipulations. Experimental results indicate that a novel black-box adversarial attack based on local deformation is possible, which is vastly different from additive noise based attacks. The findings of this work may pave a new research direction towards a more thorough understanding and investigation of image-based adversarial attacks and defenses.

  Click for Model/Code and Paper
Knowledge-guided Semantic Computing Network

Sep 29, 2018
Guangming Shi, Zhongqiang Zhang, Dahua Gao, Xuemei Xie, Yihao Feng, Xinrui Ma, Danhua Liu

It is very useful to integrate human knowledge and experience into traditional neural networks for faster learning speed, fewer training samples and better interpretability. However, due to the obscured and indescribable black box model of neural networks, it is very difficult to design its architecture, interpret its features and predict its performance. Inspired by human visual cognition process, we propose a knowledge-guided semantic computing network which includes two modules: a knowledge-guided semantic tree and a data-driven neural network. The semantic tree is pre-defined to describe the spatial structural relations of different semantics, which just corresponds to the tree-like description of objects based on human knowledge. The object recognition process through the semantic tree only needs simple forward computing without training. Besides, to enhance the recognition ability of the semantic tree in aspects of the diversity, randomicity and variability, we use the traditional neural network to aid the semantic tree to learn some indescribable features. Only in this case, the training process is needed. The experimental results on MNIST and GTSRB datasets show that compared with the traditional data-driven network, our proposed semantic computing network can achieve better performance with fewer training samples and lower computational complexity. Especially, Our model also has better adversarial robustness than traditional neural network with the help of human knowledge.

* 13 pages, 13 figures 

  Click for Model/Code and Paper
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks

Sep 17, 2018
Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Chen Change Loy, Yu Qiao, Xiaoou Tang

The Super-Resolution Generative Adversarial Network (SRGAN) is a seminal work that is capable of generating realistic textures during single image super-resolution. However, the hallucinated details are often accompanied with unpleasant artifacts. To further enhance the visual quality, we thoroughly study three key components of SRGAN - network architecture, adversarial loss and perceptual loss, and improve each of them to derive an Enhanced SRGAN (ESRGAN). In particular, we introduce the Residual-in-Residual Dense Block (RRDB) without batch normalization as the basic network building unit. Moreover, we borrow the idea from relativistic GAN to let the discriminator predict relative realness instead of the absolute value. Finally, we improve the perceptual loss by using the features before activation, which could provide stronger supervision for brightness consistency and texture recovery. Benefiting from these improvements, the proposed ESRGAN achieves consistently better visual quality with more realistic and natural textures than SRGAN and won the first place in the PIRM2018-SR Challenge. The code is available at .

* To appear in ECCV 2018 workshop. Won Region 3 in the PIRM2018-SR Challenge. Code and models are at 

  Click for Model/Code and Paper
FakeLocator: Robust Localization of GAN-Based Face Manipulations via Semantic Segmentation Networks with Bells and Whistles

Feb 21, 2020
Yihao Huang, Felix Juefei-Xu, Run Wang, Xiaofei Xie, Lei Ma, Jianwen Li, Weikai Miao, Yang Liu, Geguang Pu

Nowadays, full face synthesis and partial face manipulation by virtue of the generative adversarial networks (GANs) have raised wide public concern. In the digital media forensics area, detecting and ultimately locating the image forgery have become imperative. Although many methods focus on fake detection, only a few put emphasis on the localization of the fake regions. Through analyzing the imperfection in the upsampling procedures of the GAN-based methods and recasting the fake localization problem as a modified semantic segmentation one, our proposed FakeLocator can obtain high localization accuracy, at full resolution, on manipulated facial images. To the best of our knowledge, this is the very first attempt to solve the GAN-based fake localization problem with a semantic segmentation map. As an improvement, the real-numbered segmentation map proposed by us preserves more information of fake regions. For this new type segmentation map, we also find suitable loss functions for it. Experimental results on the CelebA and FFHQ databases with seven different SOTA GAN-based face generation methods show the effectiveness of our method. Compared with the baseline, our method performs several times better on various metrics. Moreover, the proposed method is robust against various real-world facial image degradations such as JPEG compression, low-resolution, noise, and blur.

* 7 pages 

  Click for Model/Code and Paper