Models, code, and papers for "Yiming Yang":

Data-driven Random Fourier Features using Stein Effect

May 23, 2017
Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, Barnabas Poczos

Large-scale kernel approximation is an important problem in machine learning research. Approaches using random Fourier features have become increasingly popular [Rahimi and Recht, 2007], where kernel approximation is treated as empirical mean estimation via Monte Carlo (MC) or Quasi-Monte Carlo (QMC) integration [Yang et al., 2014]. A limitation of the current approaches is that all the features receive an equal weight summing to 1. In this paper, we propose a novel shrinkage estimator from "Stein effect", which provides a data-driven weighting strategy for random features and enjoys theoretical justifications in terms of lowering the empirical risk. We further present an efficient randomized algorithm for large-scale applications of the proposed method. Our empirical results on six benchmark data sets demonstrate the advantageous performance of this approach over representative baselines in both kernel approximation and supervised learning tasks.

* To appear in International Joint Conference on Artificial Intelligence (IJCAI), 2017 

  Click for Model/Code and Paper
Cross-lingual Distillation for Text Classification

Mar 28, 2018
Ruochen Xu, Yiming Yang

Cross-lingual text classification(CLTC) is the task of classifying documents written in different languages into the same taxonomy of categories. This paper presents a novel approach to CLTC that builds on model distillation, which adapts and extends a framework originally proposed for model compression. Using soft probabilistic predictions for the documents in a label-rich language as the (induced) supervisory labels in a parallel corpus of documents, we train classifiers successfully for new languages in which labeled training data are not available. An adversarial feature adaptation technique is also applied during the model training to reduce distribution mismatch. We conducted experiments on two benchmark CLTC datasets, treating English as the source language and German, French, Japan and Chinese as the unlabeled target languages. The proposed approach had the advantageous or comparable performance of the other state-of-art methods.

* Accepted at ACL 2017; Code available at 

  Click for Model/Code and Paper
Cross-Graph Learning of Multi-Relational Associations

May 06, 2016
Hanxiao Liu, Yiming Yang

Cross-graph Relational Learning (CGRL) refers to the problem of predicting the strengths or labels of multi-relational tuples of heterogeneous object types, through the joint inference over multiple graphs which specify the internal connections among each type of objects. CGRL is an open challenge in machine learning due to the daunting number of all possible tuples to deal with when the numbers of nodes in multiple graphs are large, and because the labeled training instances are extremely sparse as typical. Existing methods such as tensor factorization or tensor-kernel machines do not work well because of the lack of convex formulation for the optimization of CGRL models, the poor scalability of the algorithms in handling combinatorial numbers of tuples, and/or the non-transductive nature of the learning methods which limits their ability to leverage unlabeled data in training. This paper proposes a novel framework which formulates CGRL as a convex optimization problem, enables transductive learning using both labeled and unlabeled tuples, and offers a scalable algorithm that guarantees the optimal solution and enjoys a linear time complexity with respect to the sizes of input graphs. In our experiments with a subset of DBLP publication records and an Enzyme multi-source dataset, the proposed method successfully scaled to the large cross-graph inference problem, and outperformed other representative approaches significantly.

  Click for Model/Code and Paper
Convolutional Normalizing Flows

Jul 09, 2018
Guoqing Zheng, Yiming Yang, Jaime Carbonell

Bayesian posterior inference is prevalent in various machine learning problems. Variational inference provides one way to approximate the posterior distribution, however its expressive power is limited and so is the accuracy of resulting approximation. Recently, there has a trend of using neural networks to approximate the variational posterior distribution due to the flexibility of neural network architecture. One way to construct flexible variational distribution is to warp a simple density into a complex by normalizing flows, where the resulting density can be analytically evaluated. However, there is a trade-off between the flexibility of normalizing flow and computation cost for efficient transformation. In this paper, we propose a simple yet effective architecture of normalizing flows, ConvFlow, based on convolution over the dimensions of random input vector. Experiments on synthetic and real world posterior inference problems demonstrate the effectiveness and efficiency of the proposed method.

* ICML 2018 Workshop on Theoretical Foundations and Applications of Deep Generative Models 

  Click for Model/Code and Paper
Asymmetric Variational Autoencoders

Jul 09, 2018
Guoqing Zheng, Yiming Yang, Jaime Carbonell

Variational inference for latent variable models is prevalent in various machine learning problems, typically solved by maximizing the Evidence Lower Bound (ELBO) of the true data likelihood with respect to a variational distribution. However, freely enriching the family of variational distribution is challenging since the ELBO requires variational likelihood evaluations of the latent variables. In this paper, we propose a novel framework to enrich the variational family by incorporating auxiliary variables to the variational family. The resulting inference network doesn't require density evaluations for the auxiliary variables and thus complex implicit densities over the auxiliary variables can be constructed by neural networks. It can be shown that the actual variational posterior of the proposed approach is essentially modeling a rich probabilistic mixture of simple variational posterior indexed by auxiliary variables, thus a flexible inference model can be built. Empirical evaluations on several density estimation tasks demonstrates the effectiveness of the proposed method.

* ICML 2018 Workshop on Theoretical Foundations and Applications of Deep Generative Models 

  Click for Model/Code and Paper
DARTS: Differentiable Architecture Search

Jun 24, 2018
Hanxiao Liu, Karen Simonyan, Yiming Yang

This paper addresses the scalability challenge of architecture search by formulating the task in a differentiable manner. Unlike conventional approaches of applying evolution or reinforcement learning over a discrete and non-differentiable search space, our method is based on the continuous relaxation of the architecture representation, allowing efficient search of the architecture using gradient descent. Extensive experiments on CIFAR-10, ImageNet, Penn Treebank and WikiText-2 show that our algorithm excels in discovering high-performance convolutional architectures for image classification and recurrent architectures for language modeling, while being orders of magnitude faster than state-of-the-art non-differentiable techniques.

  Click for Model/Code and Paper
Learning Depthwise Graph Convolution from Data Manifold

May 23, 2018
Guokun Lai, Hanxiao Liu, Yiming Yang

Convolution Neural Network (CNN) has gained tremendous success in computer vision tasks with its outstanding ability to capture the local latent features. Recently, there has been an increasing interest in extending convolution operations to the non-Euclidean geometry. Although various types of convolution operations have been proposed for graphs or manifolds, their connections with traditional convolution over grid-structured data are not well-understood. In this paper, we show that depthwise separable convolution can be successfully generalized for the unification of both graph-based and grid-based convolution methods. Based on this insight we propose a novel Depthwise Separable Graph Convolution (DSGC) approach which is compatible with the tradition convolution network and subsumes existing convolution methods as special cases. It is equipped with the combined strengths in model expressiveness, compatibility (relatively small number of parameters), modularity and computational efficiency in training. Extensive experiments show the outstanding performance of DSGC in comparison with strong baselines on multi-domain benchmark datasets.

  Click for Model/Code and Paper
Analogical Inference for Multi-Relational Embeddings

Jul 06, 2017
Hanxiao Liu, Yuexin Wu, Yiming Yang

Large-scale multi-relational embedding refers to the task of learning the latent representations for entities and relations in large knowledge graphs. An effective and scalable solution for this problem is crucial for the true success of knowledge-based inference in a broad range of applications. This paper proposes a novel framework for optimizing the latent representations with respect to the \textit{analogical} properties of the embedded entities and relations. By formulating the learning objective in a differentiable fashion, our model enjoys both theoretical power and computational scalability, and significantly outperformed a large number of representative baseline methods on benchmark datasets. Furthermore, the model offers an elegant unification of several well-known methods in multi-relational embedding, which can be proven to be special instantiations of our framework.

  Click for Model/Code and Paper
Co-Clustering for Multitask Learning

Mar 03, 2017
Keerthiram Murugesan, Jaime Carbonell, Yiming Yang

This paper presents a new multitask learning framework that learns a shared representation among the tasks, incorporating both task and feature clusters. The jointly-induced clusters yield a shared latent subspace where task relationships are learned more effectively and more generally than in state-of-the-art multitask learning methods. The proposed general framework enables the derivation of more specific or restricted state-of-the-art multitask methods. The paper also proposes a highly-scalable multitask learning algorithm, based on the new framework, using conjugate gradient descent and generalized \textit{Sylvester equations}. Experimental results on synthetic and benchmark datasets show that the proposed method systematically outperforms several state-of-the-art multitask learning methods.

  Click for Model/Code and Paper
XL-Editor: Post-editing Sentences with XLNet

Oct 19, 2019
Yong-Siang Shih, Wei-Cheng Chang, Yiming Yang

While neural sequence generation models achieve initial success for many NLP applications, the canonical decoding procedure with left-to-right generation order (i.e., autoregressive) in one-pass can not reflect the true nature of human revising a sentence to obtain a refined result. In this work, we propose XL-Editor, a novel training framework that enables state-of-the-art generalized autoregressive pretraining methods, XLNet specifically, to revise a given sentence by the variable-length insertion probability. Concretely, XL-Editor can (1) estimate the probability of inserting a variable-length sequence into a specific position of a given sentence; (2) execute post-editing operations such as insertion, deletion, and replacement based on the estimated variable-length insertion probability; (3) complement existing sequence-to-sequence models to refine the generated sequences. Empirically, we first demonstrate better post-editing capabilities of XL-Editor over XLNet on the text insertion and deletion tasks, which validates the effectiveness of our proposed framework. Furthermore, we extend XL-Editor to the unpaired text style transfer task, where transferring the target style onto a given sentence can be naturally viewed as post-editing the sentence into the target style. XL-Editor achieves significant improvement in style transfer accuracy and also maintains coherent semantic of the original sentence, showing the broad applicability of our method.

* Under review 

  Click for Model/Code and Paper
Bridging the domain gap in cross-lingual document classification

Sep 20, 2019
Guokun Lai, Barlas Oguz, Yiming Yang, Veselin Stoyanov

The scarcity of labeled training data often prohibits the internationalization of NLP models to multiple languages. Recent developments in cross-lingual understanding (XLU) has made progress in this area, trying to bridge the language barrier using language universal representations. However, even if the language problem was resolved, models trained in one language would not transfer to another language perfectly due to the natural domain drift across languages and cultures. We consider the setting of semi-supervised cross-lingual understanding, where labeled data is available in a source language (English), but only unlabeled data is available in the target language. We combine state-of-the-art cross-lingual methods with recently proposed methods for weakly supervised learning such as unsupervised pre-training and unsupervised data augmentation to simultaneously close both the language gap and the domain gap in XLU. We show that addressing the domain gap is crucial. We improve over strong baselines and achieve a new state-of-the-art for cross-lingual document classification.

  Click for Model/Code and Paper
Stochastic AUC Maximization with Deep Neural Networks

Aug 30, 2019
Mingrui Liu, Zhuoning Yuan, Yiming Ying, Tianbao Yang

Stochastic AUC maximization has garnered an increasing interest due to better fit to imbalanced data classification. However, existing works are limited to stochastic AUC maximization with a linear predictive model, which restricts its predictive power when dealing with extremely complex data. In this paper, we consider stochastic AUC maximization problem with a deep neural network as the predictive model. Building on the saddle point reformulation of a surrogated loss of AUC, the problem can be cast into a {\it non-convex concave} min-max problem. The main contribution made in this paper is to make stochastic AUC maximization more practical for deep neural networks and big data with theoretical insights as well. In particular, we propose to explore Polyak-\L{}ojasiewicz (PL) condition that has been proved and observed in deep learning, which enables us to develop new stochastic algorithms with even faster convergence rate and more practical step size scheme. An AdaGrad-style algorithm is also analyzed under the PL condition with adaptive convergence rate. Our experimental results demonstrate the effectiveness of the proposed algorithms.

* add some citations 

  Click for Model/Code and Paper
Stability and Optimization Error of Stochastic Gradient Descent for Pairwise Learning

Apr 26, 2019
Wei Shen, Zhenhuan Yang, Yiming Ying, Xiaoming Yuan

In this paper we study the stability and its trade-off with optimization error for stochastic gradient descent (SGD) algorithms in the pairwise learning setting. Pairwise learning refers to a learning task which involves a loss function depending on pairs of instances among which notable examples are bipartite ranking, metric learning, area under ROC (AUC) maximization and minimum error entropy (MEE) principle. Our contribution is twofold. Firstly, we establish the stability results of SGD for pairwise learning in the convex, strongly convex and non-convex settings, from which generalization bounds can be naturally derived. Secondly, we establish the trade-off between stability and optimization error of SGD algorithms for pairwise learning. This is achieved by lower-bounding the sum of stability and optimization error by the minimax statistical error over a prescribed class of pairwise loss functions. From this fundamental trade-off, we obtain lower bounds for the optimization error of SGD algorithms and the excess expected risk over a class of pairwise losses. In addition, we illustrate our stability results by giving some specific examples of AUC maximization, metric learning and MEE.

* 35 pages 

  Click for Model/Code and Paper
Re-examination of the Role of Latent Variables in Sequence Modeling

Feb 04, 2019
Zihang Dai, Guokun Lai, Yiming Yang, Shinjae Yoo

With latent variables, stochastic recurrent models have achieved state-of-the-art performance in modeling sound-wave sequence. However, opposite results are also observed in other domains, where standard recurrent networks often outperform stochastic models. To better understand this discrepancy, we re-examine the roles of latent variables in stochastic recurrent models for speech density estimation. Our analysis reveals that under the restriction of fully factorized output distribution in previous evaluations, the stochastic models were implicitly leveraging intra-step correlation but the standard recurrent baselines were prohibited to do so, resulting in an unfair comparison. To correct the unfairness, we remove such restriction in our re-examination, where all the models can explicitly leverage intra-step correlation with an auto-regressive structure. Over a diverse set of sequential data, including human speech, MIDI music, handwriting trajectory and frame-permuted speech, our results show that stochastic recurrent models fail to exhibit any practical advantage despite the claimed theoretical superiority. In contrast, standard recurrent models equipped with an auto-regressive output distribution consistently perform better, significantly advancing the state-of-the-art results on three speech datasets.

* Code available at 

  Click for Model/Code and Paper
Unsupervised Cross-lingual Transfer of Word Embedding Spaces

Sep 10, 2018
Ruochen Xu, Yiming Yang, Naoki Otani, Yuexin Wu

Cross-lingual transfer of word embeddings aims to establish the semantic mappings among words in different languages by learning the transformation functions over the corresponding word embedding spaces. Successfully solving this problem would benefit many downstream tasks such as to translate text classification models from resource-rich languages (e.g. English) to low-resource languages. Supervised methods for this problem rely on the availability of cross-lingual supervision, either using parallel corpora or bilingual lexicons as the labeled data for training, which may not be available for many low resource languages. This paper proposes an unsupervised learning approach that does not require any cross-lingual labeled data. Given two monolingual word embedding spaces for any language pair, our algorithm optimizes the transformation functions in both directions simultaneously based on distributional matching as well as minimizing the back-translation losses. We use a neural network implementation to calculate the Sinkhorn distance, a well-defined distributional similarity measure, and optimize our objective through back-propagation. Our evaluation on benchmark datasets for bilingual lexicon induction and cross-lingual word similarity prediction shows stronger or competitive performance of the proposed method compared to other state-of-the-art supervised and unsupervised baseline methods over many language pairs.

* EMNLP 2018 

  Click for Model/Code and Paper
Stochastic WaveNet: A Generative Latent Variable Model for Sequential Data

Jun 15, 2018
Guokun Lai, Bohan Li, Guoqing Zheng, Yiming Yang

How to model distribution of sequential data, including but not limited to speech and human motions, is an important ongoing research problem. It has been demonstrated that model capacity can be significantly enhanced by introducing stochastic latent variables in the hidden states of recurrent neural networks. Simultaneously, WaveNet, equipped with dilated convolutions, achieves astonishing empirical performance in natural speech generation task. In this paper, we combine the ideas from both stochastic latent variables and dilated convolutions, and propose a new architecture to model sequential data, termed as Stochastic WaveNet, where stochastic latent variables are injected into the WaveNet structure. We argue that Stochastic WaveNet enjoys powerful distribution modeling capacity and the advantage of parallel training from dilated convolutions. In order to efficiently infer the posterior distribution of the latent variables, a novel inference network structure is designed based on the characteristics of WaveNet architecture. State-of-the-art performances on benchmark datasets are obtained by Stochastic WaveNet on natural speech modeling and high quality human handwriting samples can be generated as well.

* ICML 2018 Workshop 

  Click for Model/Code and Paper
Scaling Sampling-based Motion Planning to Humanoid Robots

Jul 29, 2016
Yiming Yang, Vladimir Ivan, Wolfgang Merkt, Sethu Vijayakumar

Planning balanced and collision-free motion for humanoid robots is non-trivial, especially when they are operated in complex environments, such as reaching targets behind obstacles or through narrow passages. We propose a method that allows us to apply existing sampling--based algorithms to plan trajectories for humanoids by utilizing a customized state space representation, biased sampling strategies, and a steering function based on a robust inverse kinematics solver. Our approach requires no prior offline computation, thus one can easily transfer the work to new robot platforms. We tested the proposed method solving practical reaching tasks on a 38 degrees-of-freedom humanoid robot, NASA Valkyrie, showing that our method is able to generate valid motion plans that can be executed on advanced full-size humanoid robots. We also present a benchmark between different motion planning algorithms evaluated on a variety of reaching motion problems. This allows us to find suitable algorithms for solving humanoid motion planning problems, and to identify the limitations of these algorithms.

* 7 pages, 6 figures 

  Click for Model/Code and Paper
Meta Reinforcement Learning with Distribution of Exploration Parameters Learned by Evolution Strategies

Dec 29, 2018
Yiming Shen, Kehan Yang, Yufeng Yuan, Simon Cheng Liu

In this paper, we propose a novel meta-learning method in a reinforcement learning setting, based on evolution strategies (ES), exploration in parameter space and deterministic policy gradients. ES methods are easy to parallelize, which is desirable for modern training architectures; however, such methods typically require a huge number of samples for effective training. We use deterministic policy gradients during adaptation and other techniques to compensate for the sample-efficiency problem while maintaining the inherent scalability of ES methods. We demonstrate that our method achieves good results compared to gradient-based meta-learning in high-dimensional control tasks in the MuJoCo simulator. In addition, because of gradient-free methods in the meta-training phase, which do not need information about gradients and policies in adaptation training, we predict and confirm our algorithm performs better in tasks that need multi-step adaptation.

  Click for Model/Code and Paper
Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks

Apr 18, 2018
Guokun Lai, Wei-Cheng Chang, Yiming Yang, Hanxiao Liu

Multivariate time series forecasting is an important machine learning problem across many domains, including predictions of solar plant energy output, electricity consumption, and traffic jam situation. Temporal data arise in these real-world applications often involves a mixture of long-term and short-term patterns, for which traditional approaches such as Autoregressive models and Gaussian Process may fail. In this paper, we proposed a novel deep learning framework, namely Long- and Short-term Time-series network (LSTNet), to address this open challenge. LSTNet uses the Convolution Neural Network (CNN) and the Recurrent Neural Network (RNN) to extract short-term local dependency patterns among variables and to discover long-term patterns for time series trends. Furthermore, we leverage traditional autoregressive model to tackle the scale insensitive problem of the neural network model. In our evaluation on real-world data with complex mixtures of repetitive patterns, LSTNet achieved significant performance improvements over that of several state-of-the-art baseline methods. All the data and experiment codes are available online.

* Accepted by SIGIR 2018 

  Click for Model/Code and Paper
Graph-Revised Convolutional Network

Nov 17, 2019
Donghan Yu, Ruohong Zhang, Zhengbao Jiang, Yuexin Wu, Yiming Yang

Graph Convolutional Networks (GCNs) have received increasing attention in the machine learning community for effectively leveraging both the content features of nodes and the linkage patterns across graphs in various applications. As real-world graphs are often incomplete and noisy, treating them as ground-truth information, which is a common practice in most GCNs, unavoidably leads to sub-optimal solutions. Existing efforts for addressing this problem either involve an over-parameterized model which is difficult to scale, or simply re-weight observed edges without dealing with the missing-edge issue. This paper proposes a novel framework called Graph-Revised Convolutional Network (GRCN), which avoids both extremes. Specifically, a GCN-based graph revision module is introduced for predicting missing edges and revising edge weights w.r.t. downstream tasks via joint optimization. A theoretical analysis reveals the connection between GRCN and previous work on multigraph belief propagation. Experiments on six benchmark datasets show that GRCN consistently outperforms strong baseline methods by a large margin, especially when the original graphs are severely incomplete or the labeled instances for model training are highly sparse.

  Click for Model/Code and Paper