Research papers and code for "Ying-Chang Liang":
In an RF-powered backscatter cognitive radio network, multiple secondary users communicate with a secondary gateway by backscattering or harvesting energy and actively transmitting their data depending on the primary channel state. To coordinate the transmission of multiple secondary transmitters, the secondary gateway needs to schedule the backscattering time, energy harvesting time, and transmission time among them. However, under the dynamics of the primary channel and the uncertainty of the energy state of the secondary transmitters, it is challenging for the gateway to find a time scheduling mechanism which maximizes the total throughput. In this paper, we propose to use the deep reinforcement learning algorithm to derive an optimal time scheduling policy for the gateway. Specifically, to deal with the problem with large state and action spaces, we adopt a Double Deep-Q Network (DDQN) that enables the gateway to learn the optimal policy. The simulation results clearly show that the proposed deep reinforcement learning algorithm outperforms non-learning schemes in terms of network throughput.

Click to Read Paper and Get Code
To strengthen data privacy and security, federated learning as an emerging machine learning technique is proposed to enable large-scale nodes, e.g., mobile devices, to distributedly train and globally share models without revealing their local data. This technique can not only significantly improve privacy protection for mobile devices, but also ensure good performance of the trained results collectively. Currently, most the existing studies focus on optimizing federated learning algorithms to improve model training performance. However, incentive mechanisms to motivate the mobile devices to join model training have been largely overlooked. The mobile devices suffer from considerable overhead in terms of computation and communication during the federated model training process. Without well-designed incentive, self-interested mobile devices will be unwilling to join federated learning tasks, which hinders the adoption of federated learning. To bridge this gap, in this paper, we adopt the contract theory to design an effective incentive mechanism for simulating the mobile devices with high-quality (i.e., high-accuracy) data to participate in federated learning. Numerical results demonstrate that the proposed mechanism is efficient for federated learning with improved learning accuracy.

* submitted to the conference for potential publication
Click to Read Paper and Get Code
Rank minimization methods have attracted considerable interest in various areas, such as computer vision and machine learning. The most representative work is nuclear norm minimization (NNM), which can recover the matrix rank exactly under some restricted and theoretical guarantee conditions. However, for many real applications, NNM is not able to approximate the matrix rank accurately, since it often tends to over-shrink the rank components. To rectify the weakness of NNM, recent advances have shown that weighted nuclear norm minimization (WNNM) can achieve a better matrix rank approximation than NNM, which heuristically set the weight being inverse to the singular values. However, it still lacks a sound mathematical explanation on why WNNM is more feasible than NNM. In this paper, we propose a scheme to analyze WNNM and NNM from the perspective of the group sparse representation. Specifically, we design an adaptive dictionary to bridge the gap between the group sparse representation and the rank minimization models. Based on this scheme, we provide a mathematical derivation to explain why WNNM is more feasible than NNM. Moreover, due to the heuristical set of the weight, WNNM sometimes pops out error in the operation of SVD, and thus we present an adaptive weight setting scheme to avoid this error. We then employ the proposed scheme on two low-level vision tasks including image denoising and image inpainting. Experimental results demonstrate that WNNM is more feasible than NNM and the proposed scheme outperforms many current state-of-the-art methods.

* arXiv admin note: substantial text overlap with arXiv:1611.08983
Click to Read Paper and Get Code
This paper presents a comprehensive literature review on applications of deep reinforcement learning in communications and networking. Modern networks, e.g., Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, deep reinforcement learning, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of deep reinforcement learning from fundamental concepts to advanced models. Then, we review deep reinforcement learning approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks such as 5G and beyond. Furthermore, we present applications of deep reinforcement learning for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying deep reinforcement learning.

* 37 pages, 13 figures, 6 tables, 174 reference papers
Click to Read Paper and Get Code