Detecting a change point is a crucial task in statistics that has been recently extended to the quantum realm. A source state generator that emits a series of single photons in a default state suffers an alteration at some point and starts to emit photons in a mutated state. The problem consists in identifying the point where the change took place. In this work, we consider a learning agent that applies Bayesian inference on experimental data to solve this problem. This learning machine adjusts the measurement over each photon according to the past experimental results finds the change position in an online fashion. Our results show that the local-detection success probability can be largely improved by using such a machine learning technique. This protocol provides a tool for improvement in many applications where a sequence of identical quantum states is required.

* Phys. Rev. A 98, 040301 (2018)
Click to Read Paper
With the aim to improve the performance of feature matching, we present an unsupervised approach to fuse various local descriptors in the space of homographies. Inspired by the observation that the homographies of correct feature correspondences vary smoothly along the spatial domain, our approach stands on the unsupervised nature of feature matching, and can select a good descriptor for matching each feature point. Specifically, the homography space serves as the common domain, in which a correspondence obtained by any descriptor is considered as a point, for integrating various heterogeneous descriptors. Both geometric coherence and spatial continuity among correspondences are considered via computing their geodesic distances in the space. In this way, mutual verification across different descriptors is allowed, and correct correspondences will be highlighted with a high degree of consistency (i.e., short geodesic distances here). It follows that one-class SVM can be applied to identifying these correct correspondences, and boosts the performance of feature matching. The proposed approach is comprehensively compared with the state-of-the-art approaches, and evaluated on four benchmarks of image matching. The promising results manifest its effectiveness.

Click to Read Paper
Although the general deterministic reward function in MDPs takes three arguments - current state, action, and next state; it is often simplified to a function of two arguments - current state and action. The former is called a transition-based reward function, whereas the latter is called a state-based reward function. When the objective is a function of the expected cumulative reward only, this simplification works perfectly. However, when the objective is risk-sensitive - e.g., depends on the reward distribution, this simplification leads to incorrect values of the objective. This paper studies the distribution estimation of the cumulative discounted reward in infinite-horizon MDPs with finite state and action spaces. First, by taking the Value-at-Risk (VaR) objective as an example, we illustrate and analyze the error from the above simplification on the reward distribution. Next, we propose a transformation for MDPs to preserve the reward distribution and convert transition-based reward functions to deterministic state-based reward functions. This transformation works whether the transition-based reward function is deterministic or stochastic. Lastly, we show how to estimate the reward distribution after applying the proposed transformation in different settings, provided that the distribution is approximately normal.

Click to Read Paper
The culture of sharing instead of ownership is sharply increasing in individuals behaviors. Particularly in transportation, concepts of sharing a ride in either carpooling or ridesharing have been recently adopted. An efficient optimization approach to match passengers in real-time is the core of any ridesharing system. In this paper, we model ridesharing as an online matching problem on general graphs such that passengers do not drive private cars and use shared taxis. We propose an optimization algorithm to solve it. The outlined algorithm calculates the optimal waiting time when a passenger arrives. This leads to a matching with minimal overall overheads while maximizing the number of partnerships. To evaluate the behavior of our algorithm, we used NYC taxi real-life data set. Results represent a substantial reduction in overall overheads.

Click to Read Paper
This paper studies Value-at-Risk (VaR) problems in short- and long-horizon Markov decision processes (MDPs) with finite state space and two different reward functions. Firstly we examine the effects of two reward functions under two criteria in a short-horizon MDP. We show that under the VaR criterion, when the original reward function is on both current and next states, the reward simplification will change the VaR. Secondly, for long-horizon MDPs, we estimate the Pareto front of the total reward distribution set with the aid of spectral theory and the central limit theorem. Since the estimation is for a Markov process with the simplified reward function only, we present a transformation algorithm for the Markov process with the original reward function, in order to estimate the Pareto front with an intact total reward distribution.

* 23 pages, 5 figures
Click to Read Paper
Instead of studying the properties of social relationship from an objective view, in this paper, we focus on individuals' subjective and asymmetric opinions on their interrelationships. Inspired by the theories from sociolinguistics, we investigate two individuals' opinions on their interrelationship with their interactive language features. Eliminating the difference of personal language style, we clarify that the asymmetry of interactive language feature values can indicate individuals' asymmetric opinions on their interrelationship. We also discuss how the degree of opinions' asymmetry is related to the individuals' personality traits. Furthermore, to measure the individuals' asymmetric opinions on interrelationship concretely, we develop a novel model synthetizing interactive language and social network features. The experimental results with Enron email dataset provide multiple evidences of the asymmetric opinions on interrelationship, and also verify the effectiveness of the proposed model in measuring the degree of opinions' asymmetry.

Click to Read Paper
We consider the problem of online linear regression on individual sequences. The goal in this paper is for the forecaster to output sequential predictions which are, after T time rounds, almost as good as the ones output by the best linear predictor in a given L1-ball in R^d. We consider both the cases where the dimension d is small and large relative to the time horizon T. We first present regret bounds with optimal dependencies on the sizes U, X and Y of the L1-ball, the input data and the observations. The minimax regret is shown to exhibit a regime transition around the point d = sqrt(T) U X / (2 Y). Furthermore, we present efficient algorithms that are adaptive, i.e., they do not require the knowledge of U, X, and Y, but still achieve nearly optimal regret bounds.

Click to Read Paper
Recently most popular tracking frameworks focus on 2D image sequences. They seldom track the 3D object in point clouds. In this paper, we propose PointIT, a fast, simple tracking method based on 3D on-road instance segmentation. Firstly, we transform 3D LiDAR data into the spherical image with the size of 64 x 512 x 4 and feed it into instance segment model to get the predicted instance mask for each class. Then we use MobileNet as our primary encoder instead of the original ResNet to reduce the computational complexity. Finally, we extend the Sort algorithm with this instance framework to realize tracking in the 3D LiDAR point cloud data. The model is trained on the spherical images dataset with the corresponding instance label masks which are provided by KITTI 3D Object Track dataset. According to the experiment results, our network can achieve on Average Precision (AP) of 0.617 and the performance of multi-tracking task has also been improved.

Click to Read Paper
The performance of face detection has been largely improved with the development of convolutional neural network. However, the occlusion issue due to mask and sunglasses, is still a challenging problem. The improvement on the recall of these occluded cases usually brings the risk of high false positives. In this paper, we present a novel face detector called Face Attention Network (FAN), which can significantly improve the recall of the face detection problem in the occluded case without compromising the speed. More specifically, we propose a new anchor-level attention, which will highlight the features from the face region. Integrated with our anchor assign strategy and data augmentation techniques, we obtain state-of-art results on public face detection benchmarks like WiderFace and MAFA. The code will be released for reproduction.

Click to Read Paper
We introduce the functional bandit problem, where the objective is to find an arm that optimises a known functional of the unknown arm-reward distributions. These problems arise in many settings such as maximum entropy methods in natural language processing, and risk-averse decision-making, but current best-arm identification techniques fail in these domains. We propose a new approach, that combines functional estimation and arm elimination, to tackle this problem. This method achieves provably efficient performance guarantees. In addition, we illustrate this method on a number of important functionals in risk management and information theory, and refine our generic theoretical results in those cases.

Click to Read Paper
To overcome the limitations of Neural Programmer-Interpreters (NPI) in its universality and learnability, we propose the incorporation of combinator abstraction into neural programing and a new NPI architecture to support this abstraction, which we call Combinatory Neural Programmer-Interpreter (CNPI). Combinator abstraction dramatically reduces the number and complexity of programs that need to be interpreted by the core controller of CNPI, while still allowing the CNPI to represent and interpret arbitrary complex programs by the collaboration of the core with the other components. We propose a small set of four combinators to capture the most pervasive programming patterns. Due to the finiteness and simplicity of this combinator set and the offloading of some burden of interpretation from the core, we are able construct a CNPI that is universal with respect to the set of all combinatorizable programs, which is adequate for solving most algorithmic tasks. Moreover, besides supervised training on execution traces, CNPI can be trained by policy gradient reinforcement learning with appropriately designed curricula.

* Published as a conference paper at ICLR 2018
Click to Read Paper
In many "smart city" applications, congestion arises in part due to the nature of signals received by individuals from a central authority. In the model of Marecek et al. [arXiv:1406.7639, Int. J. Control 88(10), 2015], each agent uses one out of multiple resources at each time instant. The per-use cost of a resource depends on the number of concurrent users. A central authority has up-to-date knowledge of the congestion across all resources and uses randomisation to provide a scalar or an interval for each resource at each time. In this paper, the interval to broadcast per resource is obtained by taking the minima and maxima of costs observed within a time window of length r, rather than by randomisation. We show that the resulting distribution of agents across resources also converges in distribution, under plausible assumptions about the evolution of the population over time.

* International Journal of Control (2016) 89(10): 1972-1984
Click to Read Paper
For vehicle sharing schemes, where drop-off positions are not fixed, we propose a pricing scheme, where the price depends in part on the distance between where a vehicle is being dropped off and where the closest shared vehicle is parked. Under certain restrictive assumptions, we show that this pricing leads to a socially optimal spread of the vehicles within a region.

Click to Read Paper
We consider one-way vehicle sharing systems where customers can rent a car at one station and drop it off at another. The problem we address is to optimize the distribution of cars, and quality of service, by pricing rentals appropriately. We propose a bidding approach that is inspired from auctions and takes into account the significant uncertainty inherent in the problem data (e.g., pick-up and drop-off locations, time of requests, and duration of trips). Specifically, in contrast to current vehicle sharing systems, the operator does not set prices. Instead, customers submit bids and the operator decides whether to rent or not. The operator can even accept negative bids to motivate drivers to rebalance available cars to unpopular destinations within a city. We model the operator's sequential decision-making problem as a \emph{constrained Markov decision problem} (CMDP) and propose and rigorously analyze a novel two phase $Q$-learning algorithm for its solution. Numerical experiments are presented and discussed.

* Submitted to AISTATS 2016
Click to Read Paper
Different from developing neural networks (NNs) for general-purpose processors, the development for NN chips usually faces with some hardware-specific restrictions, such as limited precision of network signals and parameters, constrained computation scale, and limited types of non-linear functions. This paper proposes a general methodology to address the challenges. We decouple the NN applications from the target hardware by introducing a compiler that can transform an existing trained, unrestricted NN into an equivalent network that meets the given hardware's constraints. We propose multiple techniques to make the transformation adaptable to different kinds of NN chips, and reliable for restrict hardware constraints. We have built such a software tool that supports both spiking neural networks (SNNs) and traditional artificial neural networks (ANNs). We have demonstrated its effectiveness with a fabricated neuromorphic chip and a processing-in-memory (PIM) design. Tests show that the inference error caused by this solution is insignificant and the transformation time is much shorter than the retraining time. Also, we have studied the parameter-sensitivity evaluations to explore the tradeoffs between network error and resource utilization for different transformation strategies, which could provide insights for co-design optimization of neuromorphic hardware and software.

* Accepted by ASPLOS 2018
Click to Read Paper
Image saliency detection has recently witnessed rapid progress due to deep convolutional neural networks. However, none of the existing methods is able to identify object instances in the detected salient regions. In this paper, we present a salient instance segmentation method that produces a saliency mask with distinct object instance labels for an input image. Our method consists of three steps, estimating saliency map, detecting salient object contours and identifying salient object instances. For the first two steps, we propose a multiscale saliency refinement network, which generates high-quality salient region masks and salient object contours. Once integrated with multiscale combinatorial grouping and a MAP-based subset optimization framework, our method can generate very promising salient object instance segmentation results. To promote further research and evaluation of salient instance segmentation, we also construct a new database of 1000 images and their pixelwise salient instance annotations. Experimental results demonstrate that our proposed method is capable of achieving state-of-the-art performance on all public benchmarks for salient region detection as well as on our new dataset for salient instance segmentation.

* To appear in CVPR2017
Click to Read Paper
Computational inference of causal relationships underlying complex networks, such as gene-regulatory pathways, is NP-complete due to its combinatorial nature when permuting all possible interactions. Markov chain Monte Carlo (MCMC) has been introduced to sample only part of the combinations while still guaranteeing convergence and traversability, which therefore becomes widely used. However, MCMC is not able to perform efficiently enough for networks that have more than 15~20 nodes because of the computational complexity. In this paper, we use general purpose processor (GPP) and general purpose graphics processing unit (GPGPU) to implement and accelerate a novel Bayesian network learning algorithm. With a hash-table-based memory-saving strategy and a novel task assigning strategy, we achieve a 10-fold acceleration per iteration than using a serial GPP. Specially, we use a greedy method to search for the best graph from a given order. We incorporate a prior component in the current scoring function, which further facilitates the searching. Overall, we are able to apply this system to networks with more than 60 nodes, allowing inferences and modeling of bigger and more complex networks than current methods.

Click to Read Paper
Spoken language understanding (SLU) is an essential component in conversational systems. Considering that contexts provide informative cues for better understanding, history can be leveraged for contextual SLU. However, most prior work only paid attention to the related content in history utterances and ignored the temporal information. In dialogues, it is intuitive that the most recent utterances are more important than the least recent ones, and time-aware attention should be in a decaying manner. Therefore, this paper allows the model to automatically learn a time-decay attention function where the attentional weights can be dynamically decided based on the content of each role's contexts, which effectively integrates both content-aware and time-aware perspectives and demonstrates remarkable flexibility to complex dialogue contexts. The experiments on the benchmark Dialogue State Tracking Challenge (DSTC4) dataset show that the proposed dynamically context-sensitive time-decay attention mechanisms significantly improve the state-of-the-art model for contextual understanding performance.

Click to Read Paper
Low-Rank Matrix Recovery (LRMR) has recently been applied to saliency detection by decomposing image features into a low-rank component associated with background and a sparse component associated with visual salient regions. Despite its great potential, existing LRMR-based saliency detection methods seldom consider the inter-relationship among elements within these two components, thus are prone to generating scattered or incomplete saliency maps. In this paper, we introduce a novel and efficient LRMR-based saliency detection model under a coarse-to-fine framework to circumvent this limitation. First, we roughly measure the saliency of image regions with a baseline LRMR model that integrates a $\ell_1$-norm sparsity constraint and a Laplacian regularization smooth term. Given samples from the coarse saliency map, we then learn a projection that maps image features to refined saliency values, to significantly sharpen the object boundaries and to preserve the object entirety. We evaluate our framework against existing LRMR based methods on three benchmark datasets. Experimental results validate the superiority of our method as well as the effectiveness of our suggested coarse-to-fine framework, especially for images containing multiple objects.

* 32 pages, 9 figures
Click to Read Paper
In this work, we present an interesting attempt on mixture generation: absorbing different image concepts (e.g., content and style) from different domains and thus generating a new domain with learned concepts. In particular, we propose a mixture generative adversarial network (MIXGAN). MIXGAN learns concepts of content and style from two domains respectively, and thus can join them for mixture generation in a new domain, i.e., generating images with content from one domain and style from another. MIXGAN overcomes the limitation of current GAN-based models which either generate new images in the same domain as they observed in training stage, or require off-the-shelf content templates for transferring or translation. Extensive experimental results demonstrate the effectiveness of MIXGAN as compared to related state-of-the-art GAN-based models.

* Accepted by IJCAI-ECAI 2018, the 27th International Joint Conference on Artificial Intelligence and the 23rd European Conference on Artificial Intelligence
Click to Read Paper