Models, code, and papers for "Yuanyuan Liu":

Parallel-tempered Stochastic Gradient Hamiltonian Monte Carlo for Approximate Multimodal Posterior Sampling

Dec 07, 2018
Rui Luo, Qiang Zhang, Yuanyuan Liu

We propose a new sampler that integrates the protocol of parallel tempering with the Nos\'e-Hoover (NH) dynamics. The proposed method can efficiently draw representative samples from complex posterior distributions with multiple isolated modes in the presence of noise arising from stochastic gradient. It potentially facilitates deep Bayesian learning on large datasets where complex multimodal posteriors and mini-batch gradient are encountered.

  Click for Model/Code and Paper
Tractable and Scalable Schatten Quasi-Norm Approximations for Rank Minimization

Feb 28, 2018
Fanhua Shang, Yuanyuan Liu, James Cheng

The Schatten quasi-norm was introduced to bridge the gap between the trace norm and rank function. However, existing algorithms are too slow or even impractical for large-scale problems. Motivated by the equivalence relation between the trace norm and its bilinear spectral penalty, we define two tractable Schatten norms, i.e.\ the bi-trace and tri-trace norms, and prove that they are in essence the Schatten-$1/2$ and $1/3$ quasi-norms, respectively. By applying the two defined Schatten quasi-norms to various rank minimization problems such as MC and RPCA, we only need to solve much smaller factor matrices. We design two efficient linearized alternating minimization algorithms to solve our problems and establish that each bounded sequence generated by our algorithms converges to a critical point. We also provide the restricted strong convexity (RSC) based and MC error bounds for our algorithms. Our experimental results verified both the efficiency and effectiveness of our algorithms compared with the state-of-the-art methods.

* 26 pages, 7 figures, AISTATS 2016. arXiv admin note: text overlap with arXiv:1606.01245 

  Click for Model/Code and Paper
Accelerated Variance Reduced Stochastic ADMM

Jul 11, 2017
Yuanyuan Liu, Fanhua Shang, James Cheng

Recently, many variance reduced stochastic alternating direction method of multipliers (ADMM) methods (e.g.\ SAG-ADMM, SDCA-ADMM and SVRG-ADMM) have made exciting progress such as linear convergence rates for strongly convex problems. However, the best known convergence rate for general convex problems is O(1/T) as opposed to O(1/T^2) of accelerated batch algorithms, where $T$ is the number of iterations. Thus, there still remains a gap in convergence rates between existing stochastic ADMM and batch algorithms. To bridge this gap, we introduce the momentum acceleration trick for batch optimization into the stochastic variance reduced gradient based ADMM (SVRG-ADMM), which leads to an accelerated (ASVRG-ADMM) method. Then we design two different momentum term update rules for strongly convex and general convex cases. We prove that ASVRG-ADMM converges linearly for strongly convex problems. Besides having a low per-iteration complexity as existing stochastic ADMM methods, ASVRG-ADMM improves the convergence rate on general convex problems from O(1/T) to O(1/T^2). Our experimental results show the effectiveness of ASVRG-ADMM.

* 16 pages, 5 figures, Appears in Proceedings of the 31th AAAI Conference on Artificial Intelligence (AAAI), San Francisco, California, USA, pp. 2287--2293, 2017 

  Click for Model/Code and Paper
Unified Scalable Equivalent Formulations for Schatten Quasi-Norms

Nov 27, 2016
Fanhua Shang, Yuanyuan Liu, James Cheng

The Schatten quasi-norm can be used to bridge the gap between the nuclear norm and rank function, and is the tighter approximation to matrix rank. However, most existing Schatten quasi-norm minimization (SQNM) algorithms, as well as for nuclear norm minimization, are too slow or even impractical for large-scale problems, due to the SVD or EVD of the whole matrix in each iteration. In this paper, we rigorously prove that for any p, p1, p2>0 satisfying 1/p=1/p1+1/p2, the Schatten-p quasi-norm of any matrix is equivalent to minimizing the product of the Schatten-p1 norm (or quasi-norm) and Schatten-p2 norm (or quasi-norm) of its two factor matrices. Then we present and prove the equivalence relationship between the product formula of the Schatten quasi-norm and its weighted sum formula for the two cases of p1 and p2: p1=p2 and p1\neq p2. In particular, when p>1/2, there is an equivalence between the Schatten-p quasi-norm of any matrix and the Schatten-2p norms of its two factor matrices, where the widely used equivalent formulation of the nuclear norm can be viewed as a special case. That is, various SQNM problems with p>1/2 can be transformed into the one only involving smooth, convex norms of two factor matrices, which can lead to simpler and more efficient algorithms than conventional methods. We further extend the theoretical results of two factor matrices to the cases of three and more factor matrices, from which we can see that for any 0<p<1, the Schatten-p quasi-norm of any matrix is the minimization of the mean of the Schatten-(p3+1)p norms of all factor matrices, where p3 denotes the largest integer not exceeding 1/p. In other words, for any 0<p<1, the SQNM problem can be transformed into an optimization problem only involving the smooth, convex norms of multiple factor matrices.

* 21 pages. CUHK Technical Report CSE-ShangLC20160307, March 7, 2016 

  Click for Model/Code and Paper
Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization

Jun 04, 2016
Fanhua Shang, Yuanyuan Liu, James Cheng

The Schatten-p quasi-norm $(0<p<1)$ is usually used to replace the standard nuclear norm in order to approximate the rank function more accurately. However, existing Schatten-p quasi-norm minimization algorithms involve singular value decomposition (SVD) or eigenvalue decomposition (EVD) in each iteration, and thus may become very slow and impractical for large-scale problems. In this paper, we first define two tractable Schatten quasi-norms, i.e., the Frobenius/nuclear hybrid and bi-nuclear quasi-norms, and then prove that they are in essence the Schatten-2/3 and 1/2 quasi-norms, respectively, which lead to the design of very efficient algorithms that only need to update two much smaller factor matrices. We also design two efficient proximal alternating linearized minimization algorithms for solving representative matrix completion problems. Finally, we provide the global convergence and performance guarantees for our algorithms, which have better convergence properties than existing algorithms. Experimental results on synthetic and real-world data show that our algorithms are more accurate than the state-of-the-art methods, and are orders of magnitude faster.

* 16 pages, 5 figures, Appears in Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), Phoenix, Arizona, USA, pp. 2016--2022, 2016 

  Click for Model/Code and Paper
Generalized Higher-Order Tensor Decomposition via Parallel ADMM

Jul 05, 2014
Fanhua Shang, Yuanyuan Liu, James Cheng

Higher-order tensors are becoming prevalent in many scientific areas such as computer vision, social network analysis, data mining and neuroscience. Traditional tensor decomposition approaches face three major challenges: model selecting, gross corruptions and computational efficiency. To address these problems, we first propose a parallel trace norm regularized tensor decomposition method, and formulate it as a convex optimization problem. This method does not require the rank of each mode to be specified beforehand, and can automatically determine the number of factors in each mode through our optimization scheme. By considering the low-rank structure of the observed tensor, we analyze the equivalent relationship of the trace norm between a low-rank tensor and its core tensor. Then, we cast a non-convex tensor decomposition model into a weighted combination of multiple much smaller-scale matrix trace norm minimization. Finally, we develop two parallel alternating direction methods of multipliers (ADMM) to solve our problems. Experimental results verify that our regularized formulation is effective, and our methods are robust to noise or outliers.

* 9 pages, 5 figures, AAAI 2014 

  Click for Model/Code and Paper
RPN: A Residual Pooling Network for Efficient Federated Learning

Jan 23, 2020
Anbu Huang, Yuanyuan Chen, Yang Liu, Tianjian Chen, Qiang Yang

Federated learning is a new machine learning framework which enables different parties to collaboratively train a model while protecting data privacy and security. Due to model complexity, network unreliability and connection in-stability, communication cost has became a major bottleneck for applying federated learning to real-world applications. Current existing strategies are either need to manual setting for hyper-parameters, or break up the original process into multiple steps, which make it hard to realize end-to-end implementation. In this paper, we propose a novel compression strategy called Residual Pooling Network (RPN). Our experiments show that RPN not only reduce data transmission effectively, but also achieve almost the same performance as compared to standard federated learning. Our new approach performs as an end-to-end procedure, which should be readily applied to all CNN-based model training scenarios for improvement of communication efficiency, and hence make it easy to deploy in real-world application without human intervention.

* Accepted by the 24th European Conference on Artificial Intelligence (ECAI 2020) 

  Click for Model/Code and Paper
Pose-adaptive Hierarchical Attention Network for Facial Expression Recognition

May 24, 2019
Yuanyuan Liu, Jiyao Peng, Jiabei Zeng, Shiguang Shan

Multi-view facial expression recognition (FER) is a challenging task because the appearance of an expression varies in poses. To alleviate the influences of poses, recent methods either perform pose normalization or learn separate FER classifiers for each pose. However, these methods usually have two stages and rely on good performance of pose estimators. Different from existing methods, we propose a pose-adaptive hierarchical attention network (PhaNet) that can jointly recognize the facial expressions and poses in unconstrained environment. Specifically, PhaNet discovers the most relevant regions to the facial expression by an attention mechanism in hierarchical scales, and the most informative scales are then selected to learn the pose-invariant and expression-discriminative representations. PhaNet is end-to-end trainable by minimizing the hierarchical attention losses, the FER loss and pose loss with dynamically learned loss weights. We validate the effectiveness of the proposed PhaNet on three multi-view datasets (BU-3DFE, Multi-pie, and KDEF) and two in-the-wild FER datasets (AffectNet and SFEW). Extensive experiments demonstrate that our framework outperforms the state-of-the-arts under both within-dataset and cross-dataset settings, achieving the average accuracies of 84.92\%, 93.53\%, 88.5\%, 54.82\% and 31.25\% respectively.

* 12 pages, 15 figures 

  Click for Model/Code and Paper
Benchmarking Deep Sequential Models on Volatility Predictions for Financial Time Series

Nov 08, 2018
Qiang Zhang, Rui Luo, Yaodong Yang, Yuanyuan Liu

Volatility is a quantity of measurement for the price movements of stocks or options which indicates the uncertainty within financial markets. As an indicator of the level of risk or the degree of variation, volatility is important to analyse the financial market, and it is taken into consideration in various decision-making processes in financial activities. On the other hand, recent advancement in deep learning techniques has shown strong capabilities in modelling sequential data, such as speech and natural language. In this paper, we empirically study the applicability of the latest deep structures with respect to the volatility modelling problem, through which we aim to provide an empirical guidance for the theoretical analysis of the marriage between deep learning techniques and financial applications in the future. We examine both the traditional approaches and the deep sequential models on the task of volatility prediction, including the most recent variants of convolutional and recurrent networks, such as the dilated architecture. Accordingly, experiments with real-world stock price datasets are performed on a set of 1314 daily stock series for 2018 days of transaction. The evaluation and comparison are based on the negative log likelihood (NLL) of real-world stock price time series. The result shows that the dilated neural models, including dilated CNN and Dilated RNN, produce most accurate estimation and prediction, outperforming various widely-used deterministic models in the GARCH family and several recently proposed stochastic models. In addition, the high flexibility and rich expressive power are validated in this study.

* NIPS 2018, Workshop on Challenges and Opportunities for AI in Financial Services 

  Click for Model/Code and Paper
Fast Stochastic Variance Reduced Gradient Method with Momentum Acceleration for Machine Learning

Apr 17, 2017
Fanhua Shang, Yuanyuan Liu, James Cheng, Jiacheng Zhuo

Recently, research on accelerated stochastic gradient descent methods (e.g., SVRG) has made exciting progress (e.g., linear convergence for strongly convex problems). However, the best-known methods (e.g., Katyusha) requires at least two auxiliary variables and two momentum parameters. In this paper, we propose a fast stochastic variance reduction gradient (FSVRG) method, in which we design a novel update rule with the Nesterov's momentum and incorporate the technique of growing epoch size. FSVRG has only one auxiliary variable and one momentum weight, and thus it is much simpler and has much lower per-iteration complexity. We prove that FSVRG achieves linear convergence for strongly convex problems and the optimal $\mathcal{O}(1/T^2)$ convergence rate for non-strongly convex problems, where $T$ is the number of outer-iterations. We also extend FSVRG to directly solve the problems with non-smooth component functions, such as SVM. Finally, we empirically study the performance of FSVRG for solving various machine learning problems such as logistic regression, ridge regression, Lasso and SVM. Our results show that FSVRG outperforms the state-of-the-art stochastic methods, including Katyusha.

* Corrected a few typos in this version 

  Click for Model/Code and Paper
Efficient Relaxed Gradient Support Pursuit for Sparsity Constrained Non-convex Optimization

Dec 02, 2019
Fanhua Shang, Bingkun Wei, Hongying Liu, Yuanyuan Liu, Jiacheng Zhuo

Large-scale non-convex sparsity-constrained problems have recently gained extensive attention. Most existing deterministic optimization methods (e.g., GraSP) are not suitable for large-scale and high-dimensional problems, and thus stochastic optimization methods with hard thresholding (e.g., SVRGHT) become more attractive. Inspired by GraSP, this paper proposes a new general relaxed gradient support pursuit (RGraSP) framework, in which the sub-algorithm only requires to satisfy a slack descent condition. We also design two specific semi-stochastic gradient hard thresholding algorithms. In particular, our algorithms have much less hard thresholding operations than SVRGHT, and their average per-iteration cost is much lower (i.e., O(d) vs. O(d log(d)) for SVRGHT), which leads to faster convergence. Our experimental results on both synthetic and real-world datasets show that our algorithms are superior to the state-of-the-art gradient hard thresholding methods.

* 7 pages, 3 figures, Appeared at the Data Science Meets Optimization Workshop (DSO) at IJCAI'19 

  Click for Model/Code and Paper
mu-Forcing: Training Variational Recurrent Autoencoders for Text Generation

May 24, 2019
Dayiheng Liu, Xu Yang, Feng He, Yuanyuan Chen, Jiancheng Lv

It has been previously observed that training Variational Recurrent Autoencoders (VRAE) for text generation suffers from serious uninformative latent variables problem. The model would collapse into a plain language model that totally ignore the latent variables and can only generate repeating and dull samples. In this paper, we explore the reason behind this issue and propose an effective regularizer based approach to address it. The proposed method directly injects extra constraints on the posteriors of latent variables into the learning process of VRAE, which can flexibly and stably control the trade-off between the KL term and the reconstruction term, making the model learn dense and meaningful latent representations. The experimental results show that the proposed method outperforms several strong baselines and can make the model learn interpretable latent variables and generate diverse meaningful sentences. Furthermore, the proposed method can perform well without using other strategies, such as KL annealing.

* To appear in the ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) 

  Click for Model/Code and Paper
Structured Low-Rank Matrix Factorization with Missing and Grossly Corrupted Observations

Sep 03, 2014
Fanhua Shang, Yuanyuan Liu, Hanghang Tong, James Cheng, Hong Cheng

Recovering low-rank and sparse matrices from incomplete or corrupted observations is an important problem in machine learning, statistics, bioinformatics, computer vision, as well as signal and image processing. In theory, this problem can be solved by the natural convex joint/mixed relaxations (i.e., l_{1}-norm and trace norm) under certain conditions. However, all current provable algorithms suffer from superlinear per-iteration cost, which severely limits their applicability to large-scale problems. In this paper, we propose a scalable, provable structured low-rank matrix factorization method to recover low-rank and sparse matrices from missing and grossly corrupted data, i.e., robust matrix completion (RMC) problems, or incomplete and grossly corrupted measurements, i.e., compressive principal component pursuit (CPCP) problems. Specifically, we first present two small-scale matrix trace norm regularized bilinear structured factorization models for RMC and CPCP problems, in which repetitively calculating SVD of a large-scale matrix is replaced by updating two much smaller factor matrices. Then, we apply the alternating direction method of multipliers (ADMM) to efficiently solve the RMC problems. Finally, we provide the convergence analysis of our algorithm, and extend it to address general CPCP problems. Experimental results verified both the efficiency and effectiveness of our method compared with the state-of-the-art methods.

* 28 pages, 9 figures 

  Click for Model/Code and Paper
Cross-stained Segmentation from Renal Biopsy Images Using Multi-level Adversarial Learning

Feb 20, 2020
Ke Mei, Chuang Zhu, Lei Jiang, Jun Liu, Yuanyuan Qiao

Segmentation from renal pathological images is a key step in automatic analyzing the renal histological characteristics. However, the performance of models varies significantly in different types of stained datasets due to the appearance variations. In this paper, we design a robust and flexible model for cross-stained segmentation. It is a novel multi-level deep adversarial network architecture that consists of three sub-networks: (i) a segmentation network; (ii) a pair of multi-level mirrored discriminators for guiding the segmentation network to extract domain-invariant features; (iii) a shape discriminator that is utilized to further identify the output of the segmentation network and the ground truth. Experimental results on glomeruli segmentation from renal biopsy images indicate that our network is able to improve segmentation performance on target type of stained images and use unlabeled data to achieve similar accuracy to labeled data. In addition, this method can be easily applied to other tasks.

* Accepted by ICASSP2020 

  Click for Model/Code and Paper
Uniform-in-Time Weak Error Analysis for Stochastic Gradient Descent Algorithms via Diffusion Approximation

Feb 02, 2019
Yuanyuan Feng, Tingran Gao, Lei Li, Jian-Guo Liu, Yulong Lu

Diffusion approximation provides weak approximation for stochastic gradient descent algorithms in a finite time horizon. In this paper, we introduce new tools motivated by the backward error analysis of numerical stochastic differential equations into the theoretical framework of diffusion approximation, extending the validity of the weak approximation from finite to infinite time horizon. The new techniques developed in this paper enable us to characterize the asymptotic behavior of constant-step-size SGD algorithms for strongly convex objective functions, a goal previously unreachable within the diffusion approximation framework. Our analysis builds upon a truncated formal power expansion of the solution of a stochastic modified equation arising from diffusion approximation, where the main technical ingredient is a uniform-in-time weak error bound controlling the long-term behavior of the expansion coefficient functions near the global minimum. We expect these new techniques to greatly expand the range of applicability of diffusion approximation to cover wider and deeper aspects of stochastic optimization algorithms in data science.

* 17 pages, 2 figures 

  Click for Model/Code and Paper
Bilinear Factor Matrix Norm Minimization for Robust PCA: Algorithms and Applications

Oct 11, 2018
Fanhua Shang, James Cheng, Yuanyuan Liu, Zhi-Quan Luo, Zhouchen Lin

The heavy-tailed distributions of corrupted outliers and singular values of all channels in low-level vision have proven effective priors for many applications such as background modeling, photometric stereo and image alignment. And they can be well modeled by a hyper-Laplacian. However, the use of such distributions generally leads to challenging non-convex, non-smooth and non-Lipschitz problems, and makes existing algorithms very slow for large-scale applications. Together with the analytic solutions to lp-norm minimization with two specific values of p, i.e., p=1/2 and p=2/3, we propose two novel bilinear factor matrix norm minimization models for robust principal component analysis. We first define the double nuclear norm and Frobenius/nuclear hybrid norm penalties, and then prove that they are in essence the Schatten-1/2 and 2/3 quasi-norms, respectively, which lead to much more tractable and scalable Lipschitz optimization problems. Our experimental analysis shows that both our methods yield more accurate solutions than original Schatten quasi-norm minimization, even when the number of observations is very limited. Finally, we apply our penalties to various low-level vision problems, e.g., text removal, moving object detection, image alignment and inpainting, and show that our methods usually outperform the state-of-the-art methods.

* IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(9): 2066-2080, 2018 
* 29 pages, 19 figures 

  Click for Model/Code and Paper
Denoising Auto-encoding Priors in Undecimated Wavelet Domain for MR Image Reconstruction

Sep 04, 2019
Siyuan Wang, Junjie Lv, Yuanyuan Hu, Dong Liang, Minghui Zhang, Qiegen Liu

Compressive sensing is an impressive approach for fast MRI. It aims at reconstructing MR image using only a few under-sampled data in k-space, enhancing the efficiency of the data acquisition. In this study, we propose to learn priors based on undecimated wavelet transform and an iterative image reconstruction algorithm. At the stage of prior learning, transformed feature images obtained by undecimated wavelet transform are stacked as an input of denoising autoencoder network (DAE). The highly redundant and multi-scale input enables the correlation of feature images at different channels, which allows a robust network-driven prior. At the iterative reconstruction, the transformed DAE prior is incorporated into the classical iterative procedure by the means of proximal gradient algorithm. Experimental comparisons on different sampling trajectories and ratios validated the great potential of the presented algorithm.

* 10 pages, 11 figures, 6 tables 

  Click for Model/Code and Paper
Guaranteed Sufficient Decrease for Variance Reduced Stochastic Gradient Descent

Jun 04, 2017
Fanhua Shang, Yuanyuan Liu, James Cheng, Kelvin Kai Wing Ng, Yuichi Yoshida

In this paper, we propose a novel sufficient decrease technique for variance reduced stochastic gradient descent methods such as SAG, SVRG and SAGA. In order to make sufficient decrease for stochastic optimization, we design a new sufficient decrease criterion, which yields sufficient decrease versions of variance reduction algorithms such as SVRG-SD and SAGA-SD as a byproduct. We introduce a coefficient to scale current iterate and satisfy the sufficient decrease property, which takes the decisions to shrink, expand or move in the opposite direction, and then give two specific update rules of the coefficient for Lasso and ridge regression. Moreover, we analyze the convergence properties of our algorithms for strongly convex problems, which show that both of our algorithms attain linear convergence rates. We also provide the convergence guarantees of our algorithms for non-strongly convex problems. Our experimental results further verify that our algorithms achieve significantly better performance than their counterparts.

* 25 pages, 8 figures 

  Click for Model/Code and Paper
On Newton Screening

Feb 07, 2020
Jian Huang, Yuling Jiao, Lican Kang, Jin Liu, Yanyan Liu, Xiliang Lu, Yuanyuan Yang

Screening and working set techniques are important approaches to reducing the size of an optimization problem. They have been widely used in accelerating first-order methods for solving large-scale sparse learning problems. In this paper, we develop a new screening method called Newton screening (NS) which is a generalized Newton method with a built-in screening mechanism. We derive an equivalent KKT system for the Lasso and utilize a generalized Newton method to solve the KKT equations. Based on this KKT system, a built-in working set with a relatively small size is first determined using the sum of primal and dual variables generated from the previous iteration, then the primal variable is updated by solving a least-squares problem on the working set and the dual variable updated based on a closed-form expression. Moreover, we consider a sequential version of Newton screening (SNS) with a warm-start strategy. We show that NS possesses an optimal convergence property in the sense that it achieves one-step local convergence. Under certain regularity conditions on the feature matrix, we show that SNS hits a solution with the same signs as the underlying true target and achieves a sharp estimation error bound with high probability. Simulation studies and real data analysis support our theoretical results and demonstrate that SNS is faster and more accurate than several state-of-the-art methods in our comparative studies.

  Click for Model/Code and Paper