Models, code, and papers for "Yuexin Ma":

AutoRVO: Local Navigation with Dynamic Constraints in Dense Heterogeneous Traffic

Nov 14, 2018
Yuexin Ma, Dinesh Manocha, Wenping Wang

We present a novel algorithm for computing collision-free navigation for heterogeneous road-agents such as cars, tricycles, bicycles, and pedestrians in dense traffic. Our approach currently assumes the positions, shapes, and velocities of all vehicles and pedestrians are known and computes smooth trajectories for each agent by taking into account the dynamic constraints. We describe an efficient optimization-based algorithm for each road-agent based on reciprocal velocity obstacles that takes into account kinematic and dynamic constraints. Our algorithm uses tight fitting shape representations based on medial axis to compute collision-free trajectories in dense traffic situations. We evaluate the performance of our algorithm in real-world dense traffic scenarios and highlight the benefits over prior reciprocal collision avoidance schemes.


  Click for Model/Code and Paper
Efficient Reciprocal Collision Avoidance between Heterogeneous Agents Using CTMAT

Apr 07, 2018
Yuexin Ma, Dinesh Manocha, Wenping Wang

We present a novel algorithm for reciprocal collision avoidance between heterogeneous agents of different shapes and sizes. We present a novel CTMAT representation based on medial axis transform to compute a tight fitting bounding shape for each agent. Each CTMAT is represented using tuples, which are composed of circular arcs and line segments. Based on the reciprocal velocity obstacle formulation, we reduce the problem to solving a low-dimensional linear programming between each pair of tuples belonging to adjacent agents. We precompute the Minkowski Sums of tuples to accelerate the runtime performance. Finally, we provide an efficient method to update the orientation of each agent in a local manner. We have implemented the algorithm and highlight its performance on benchmarks corresponding to road traffic scenarios and different vehicles. The overall runtime performance is comparable to prior multi-agent collision avoidance algorithms that use circular or elliptical agents. Our approach is less conservative and results in fewer false collisions.

* International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018) 

  Click for Model/Code and Paper
Cephalometric Landmark Detection by AttentiveFeature Pyramid Fusion and Regression-Voting

Aug 23, 2019
Runnan Chen, Yuexin Ma, Nenglun Chen, Daniel Lee, Wenping Wang

Marking anatomical landmarks in cephalometric radiography is a critical operation in cephalometric analysis. Automatically and accurately locating these landmarks is a challenging issue because different landmarks require different levels of resolution and semantics. Based on this observation, we propose a novel attentive feature pyramid fusion module (AFPF) to explicitly shape high-resolution and semantically enhanced fusion features to achieve significantly higher accuracy than existing deep learning-based methods. We also combine heat maps and offset maps to perform pixel-wise regression-voting to improve detection accuracy. By incorporating the AFPF and regression-voting, we develop an end-to-end deep learning framework that improves detection accuracy by 7%~11% for all the evaluation metrics over the state-of-the-art method. We present ablation studies to give more insights into different components of our method and demonstrate its generalization capability and stability for unseen data from diverse devices.

* Early accepted by International Conference on Medical image computing and computer-assisted intervention (MICCAI 2019) 

  Click for Model/Code and Paper
TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents

Apr 09, 2019
Yuexin Ma, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wenping Wang, Dinesh Manocha

To safely and efficiently navigate in complex urban traffic, autonomous vehicles must make responsible predictions in relation to surrounding traffic-agents (vehicles, bicycles, pedestrians, etc.). A challenging and critical task is to explore the movement patterns of different traffic-agents and predict their future trajectories accurately to help the autonomous vehicle make reasonable navigation decision. To solve this problem, we propose a long short-term memory-based (LSTM-based) realtime traffic prediction algorithm, TrafficPredict. Our approach uses an instance layer to learn instances' movements and interactions and has a category layer to learn the similarities of instances belonging to the same type to refine the prediction. In order to evaluate its performance, we collected trajectory datasets in a large city consisting of varying conditions and traffic densities. The dataset includes many challenging scenarios where vehicles, bicycles, and pedestrians move among one another. We evaluate the performance of TrafficPredict on our new dataset and highlight its higher accuracy for trajectory prediction by comparing with prior prediction methods.

* Accepted by AAAI(Oral) 2019 

  Click for Model/Code and Paper
Decision Propagation Networks for Image Classification

Nov 27, 2019
Keke Tang, Peng Song, Yuexin Ma, Zhaoquan Gu, Yu Su, Zhihong Tian, Wenping Wang

High-level (e.g., semantic) features encoded in the latter layers of convolutional neural networks are extensively exploited for image classification, leaving low-level (e.g., color) features in the early layers underexplored. In this paper, we propose a novel Decision Propagation Module (DPM) to make an intermediate decision that could act as category-coherent guidance extracted from early layers, and then propagate it to the latter layers. Therefore, by stacking a collection of DPMs into a classification network, the generated Decision Propagation Network is explicitly formulated as to progressively encode more discriminative features guided by the decision, and then refine the decision based on the new generated features layer by layer. Comprehensive results on four publicly available datasets validate DPM could bring significant improvements for existing classification networks with minimal additional computational cost and is superior to the state-of-the-art methods.

  Click for Model/Code and Paper
AADS: Augmented Autonomous Driving Simulation using Data-driven Algorithms

Jan 23, 2019
Wei Li, Chengwei Pan, Rong Zhang, Jiaping Ren, Yuexin Ma, Jin Fang, Feilong Yan, Qichuan Geng, Xinyu Huang, Huajun Gong, Weiwei Xu, Guoping Wang, Dinesh Manocha, Ruigang Yang

Simulation systems have become an essential component in the development and validation of autonomous driving technologies. The prevailing state-of-the-art approach for simulation is to use game engines or high-fidelity computer graphics (CG) models to create driving scenarios. However, creating CG models and vehicle movements (e.g., the assets for simulation) remains a manual task that can be costly and time-consuming. In addition, the fidelity of CG images still lacks the richness and authenticity of real-world images and using these images for training leads to degraded performance. In this paper we present a novel approach to address these issues: Augmented Autonomous Driving Simulation (AADS). Our formulation augments real-world pictures with a simulated traffic flow to create photo-realistic simulation images and renderings. More specifically, we use LiDAR and cameras to scan street scenes. From the acquired trajectory data, we generate highly plausible traffic flows for cars and pedestrians and compose them into the background. The composite images can be re-synthesized with different viewpoints and sensor models. The resulting images are photo-realistic, fully annotated, and ready for end-to-end training and testing of autonomous driving systems from perception to planning. We explain our system design and validate our algorithms with a number of autonomous driving tasks from detection to segmentation and predictions. Compared to traditional approaches, our method offers unmatched scalability and realism. Scalability is particularly important for AD simulation and we believe the complexity and diversity of the real world cannot be realistically captured in a virtual environment. Our augmented approach combines the flexibility in a virtual environment (e.g., vehicle movements) with the richness of the real world to allow effective simulation of anywhere on earth.

  Click for Model/Code and Paper
Analogical Inference for Multi-Relational Embeddings

Jul 06, 2017
Hanxiao Liu, Yuexin Wu, Yiming Yang

Large-scale multi-relational embedding refers to the task of learning the latent representations for entities and relations in large knowledge graphs. An effective and scalable solution for this problem is crucial for the true success of knowledge-based inference in a broad range of applications. This paper proposes a novel framework for optimizing the latent representations with respect to the \textit{analogical} properties of the embedded entities and relations. By formulating the learning objective in a differentiable fashion, our model enjoys both theoretical power and computational scalability, and significantly outperformed a large number of representative baseline methods on benchmark datasets. Furthermore, the model offers an elegant unification of several well-known methods in multi-relational embedding, which can be proven to be special instantiations of our framework.

  Click for Model/Code and Paper
Computational Protein Design Using AND/OR Branch-and-Bound Search

Jan 15, 2015
Yichao Zhou, Yuexin Wu, Jianyang Zeng

The computation of the global minimum energy conformation (GMEC) is an important and challenging topic in structure-based computational protein design. In this paper, we propose a new protein design algorithm based on the AND/OR branch-and-bound (AOBB) search, which is a variant of the traditional branch-and-bound search algorithm, to solve this combinatorial optimization problem. By integrating with a powerful heuristic function, AOBB is able to fully exploit the graph structure of the underlying residue interaction network of a backbone template to significantly accelerate the design process. Tests on real protein data show that our new protein design algorithm is able to solve many prob- lems that were previously unsolvable by the traditional exact search algorithms, and for the problems that can be solved with traditional provable algorithms, our new method can provide a large speedup by several orders of magnitude while still guaranteeing to find the global minimum energy conformation (GMEC) solution.

* RECOMB 2015 

  Click for Model/Code and Paper
Harvesting Ambient RF for Presence Detection Through Deep Learning

Feb 13, 2020
Yang Liu, Tiexing Wang, Yuexin Jiang, Biao Chen

This paper explores the use of ambient radio frequency (RF) signals for human presence detection through deep learning. Using WiFi signal as an example, we demonstrate that the channel state information (CSI) obtained at the receiver contains rich information about the propagation environment. Through judicious pre-processing of the estimated CSI followed by deep learning, reliable presence detection can be achieved. Several challenges in passive RF sensing are addressed. With presence detection, how to collect training data with human presence can have a significant impact on the performance. This is in contrast to activity detection when a specific motion pattern is of interest. A second challenge is that RF signals are complex-valued. Handling complex-valued input in deep learning requires careful data representation and network architecture design. Finally, human presence affects CSI variation along multiple dimensions; such variation, however, is often masked by system impediments such as timing or frequency offset. Addressing these challenges, the proposed learning system uses pre-processing to preserve human motion induced channel variation while insulating against other impairments. A convolutional neural network (CNN) properly trained with both magnitude and phase information is then designed to achieve reliable presence detection. Extensive experiments are conducted. Using off-the-shelf WiFi devices, the proposed deep learning based RF sensing achieves near perfect presence detection during multiple extended periods of test and exhibits superior performance compared with leading edge passive infrared sensors. The learning based passive RF sensing thus provides a viable and promising alternative for presence or occupancy detection.

* Source code and datasets are available at Github: 

  Click for Model/Code and Paper
Unsupervised Cross-lingual Transfer of Word Embedding Spaces

Sep 10, 2018
Ruochen Xu, Yiming Yang, Naoki Otani, Yuexin Wu

Cross-lingual transfer of word embeddings aims to establish the semantic mappings among words in different languages by learning the transformation functions over the corresponding word embedding spaces. Successfully solving this problem would benefit many downstream tasks such as to translate text classification models from resource-rich languages (e.g. English) to low-resource languages. Supervised methods for this problem rely on the availability of cross-lingual supervision, either using parallel corpora or bilingual lexicons as the labeled data for training, which may not be available for many low resource languages. This paper proposes an unsupervised learning approach that does not require any cross-lingual labeled data. Given two monolingual word embedding spaces for any language pair, our algorithm optimizes the transformation functions in both directions simultaneously based on distributional matching as well as minimizing the back-translation losses. We use a neural network implementation to calculate the Sinkhorn distance, a well-defined distributional similarity measure, and optimize our objective through back-propagation. Our evaluation on benchmark datasets for bilingual lexicon induction and cross-lingual word similarity prediction shows stronger or competitive performance of the proposed method compared to other state-of-the-art supervised and unsupervised baseline methods over many language pairs.

* EMNLP 2018 

  Click for Model/Code and Paper
Contextual Encoding for Translation Quality Estimation

Sep 01, 2018
Junjie Hu, Wei-Cheng Chang, Yuexin Wu, Graham Neubig

The task of word-level quality estimation (QE) consists of taking a source sentence and machine-generated translation, and predicting which words in the output are correct and which are wrong. In this paper, propose a method to effectively encode the local and global contextual information for each target word using a three-part neural network approach. The first part uses an embedding layer to represent words and their part-of-speech tags in both languages. The second part leverages a one-dimensional convolution layer to integrate local context information for each target word. The third part applies a stack of feed-forward and recurrent neural networks to further encode the global context in the sentence before making the predictions. This model was submitted as the CMU entry to the WMT2018 shared task on QE, and achieves strong results, ranking first in three of the six tracks.

* 6 pages, 2018 Third Conference on Machine Translation (WMT18) 

  Click for Model/Code and Paper
Graph-Revised Convolutional Network

Nov 17, 2019
Donghan Yu, Ruohong Zhang, Zhengbao Jiang, Yuexin Wu, Yiming Yang

Graph Convolutional Networks (GCNs) have received increasing attention in the machine learning community for effectively leveraging both the content features of nodes and the linkage patterns across graphs in various applications. As real-world graphs are often incomplete and noisy, treating them as ground-truth information, which is a common practice in most GCNs, unavoidably leads to sub-optimal solutions. Existing efforts for addressing this problem either involve an over-parameterized model which is difficult to scale, or simply re-weight observed edges without dealing with the missing-edge issue. This paper proposes a novel framework called Graph-Revised Convolutional Network (GRCN), which avoids both extremes. Specifically, a GCN-based graph revision module is introduced for predicting missing edges and revising edge weights w.r.t. downstream tasks via joint optimization. A theoretical analysis reveals the connection between GRCN and previous work on multigraph belief propagation. Experiments on six benchmark datasets show that GRCN consistently outperforms strong baseline methods by a large margin, especially when the original graphs are severely incomplete or the labeled instances for model training are highly sparse.

  Click for Model/Code and Paper
Active Learning for Graph Neural Networks via Node Feature Propagation

Oct 16, 2019
Yuexin Wu, Yichong Xu, Aarti Singh, Yiming Yang, Artur Dubrawski

Graph Neural Networks (GNNs) for prediction tasks like node classification or edge prediction have received increasing attention in recent machine learning from graphically structured data. However, a large quantity of labeled graphs is difficult to obtain, which significantly limits the true success of GNNs. Although active learning has been widely studied for addressing label-sparse issues with other data types like text, images, etc., how to make it effective over graphs is an open question for research. In this paper, we present an investigation on active learning with GNNs for node classification tasks. Specifically, we propose a new method, which uses node feature propagation followed by K-Medoids clustering of the nodes for instance selection in active learning. With a theoretical bound analysis we justify the design choice of our approach. In our experiments on four benchmark datasets, the proposed method outperforms other representative baseline methods consistently and significantly.

* 16 pages, 5 figures 

  Click for Model/Code and Paper
Switch-based Active Deep Dyna-Q: Efficient Adaptive Planning for Task-Completion Dialogue Policy Learning

Nov 19, 2018
Yuexin Wu, Xiujun Li, Jingjing Liu, Jianfeng Gao, Yiming Yang

Training task-completion dialogue agents with reinforcement learning usually requires a large number of real user experiences. The Dyna-Q algorithm extends Q-learning by integrating a world model, and thus can effectively boost training efficiency using simulated experiences generated by the world model. The effectiveness of Dyna-Q, however, depends on the quality of the world model - or implicitly, the pre-specified ratio of real vs. simulated experiences used for Q-learning. To this end, we extend the recently proposed Deep Dyna-Q (DDQ) framework by integrating a switcher that automatically determines whether to use a real or simulated experience for Q-learning. Furthermore, we explore the use of active learning for improving sample efficiency, by encouraging the world model to generate simulated experiences in the state-action space where the agent has not (fully) explored. Our results show that by combining switcher and active learning, the new framework named as Switch-based Active Deep Dyna-Q (Switch-DDQ), leads to significant improvement over DDQ and Q-learning baselines in both simulation and human evaluations.

* 8 pages, 9 figures, AAAI 2019 

  Click for Model/Code and Paper
Review Networks for Caption Generation

Oct 27, 2016
Zhilin Yang, Ye Yuan, Yuexin Wu, Ruslan Salakhutdinov, William W. Cohen

We propose a novel extension of the encoder-decoder framework, called a review network. The review network is generic and can enhance any existing encoder- decoder model: in this paper, we consider RNN decoders with both CNN and RNN encoders. The review network performs a number of review steps with attention mechanism on the encoder hidden states, and outputs a thought vector after each review step; the thought vectors are used as the input of the attention mechanism in the decoder. We show that conventional encoder-decoders are a special case of our framework. Empirically, we show that our framework improves over state-of- the-art encoder-decoder systems on the tasks of image captioning and source code captioning.

* NIPS 2016 

  Click for Model/Code and Paper
StoryGAN: A Sequential Conditional GAN for Story Visualization

Dec 06, 2018
Yitong Li, Zhe Gan, Yelong Shen, Jingjing Liu, Yu Cheng, Yuexin Wu, Lawrence Carin, David Carlson, Jianfeng Gao

In this work we propose a new task called Story Visualization. Given a multi-sentence paragraph, the story is visualized by generating a sequence of images, one for each sentence. In contrast to video generation, story visualization focuses less on the continuity in generated images (frames), but more on the global consistency across dynamic scenes and characters -- a challenge that has not been addressed by any single-image or video generation methods. Therefore, we propose a new story-to-image-sequence generation model, StoryGAN, based on the sequential conditional GAN framework. Our model is unique in that it consists of a deep Context Encoder that dynamically tracks the story flow, and two discriminators at the story and image levels, respectively, to enhance the image quality and the consistency of the generated sequences. To evaluate the model, we modified existing datasets to create the CLEVR-SV and Pororo-SV datasets. Empirically, StoryGAN outperformed state-of-the-art models in image quality, contextual consistency metrics, and human evaluation.

  Click for Model/Code and Paper