Research papers and code for "Yunpu Ma":
We discuss memory models which are based on tensor decompositions using latent representations of entities and events. We show how episodic memory and semantic memory can be realized and discuss how new memory traces can be generated from sensory input: Existing memories are the basis for perception and new memories are generated via perception. We relate our mathematical approach to the hippocampal memory indexing theory. We describe the first detailed mathematical models for the complete processing pipeline from sensory input and its semantic decoding, i.e., perception, to the formation of episodic and semantic memories and their declarative semantic decodings. Our main hypothesis is that perception includes an active semantic decoding process, which relies on latent representations of entities and predicates, and that episodic and semantic memories depend on the same decoding process. We contribute to the debate between the leading memory consolidation theories, i.e., the standard consolidation theory (SCT) and the multiple trace theory (MTT). The latter is closely related to the complementary learning systems (CLS) framework. In particular, we show explicitly how episodic memory can teach the neocortex to form a semantic memory, which is a core issue in MTT and CLS.

* Presented at MLINI-2016 workshop, 2016 (arXiv:1701.01437) Report-no: MLINI/2016/06
Click to Read Paper and Get Code
Structured scene descriptions of images are useful for the automatic processing and querying of large image databases. We show how the combination of a semantic and a visual statistical model can improve on the task of mapping images to their associated scene description. In this paper we consider scene descriptions which are represented as a set of triples (subject, predicate, object), where each triple consists of a pair of visual objects, which appear in the image, and the relationship between them (e.g. man-riding-elephant, man-wearing-hat). We combine a standard visual model for object detection, based on convolutional neural networks, with a latent variable model for link prediction. We apply multiple state-of-the-art link prediction methods and compare their capability for visual relationship detection. One of the main advantages of link prediction methods is that they can also generalize to triples, which have never been observed in the training data. Our experimental results on the recently published Stanford Visual Relationship dataset, a challenging real world dataset, show that the integration of a semantic model using link prediction methods can significantly improve the results for visual relationship detection. Our combined approach achieves superior performance compared to the state-of-the-art method from the Stanford computer vision group.

Click to Read Paper and Get Code
Many applications require an understanding of an image that goes beyond the simple detection and classification of its objects. In particular, a great deal of semantic information is carried in the relationships between objects. We have previously shown that the combination of a visual model and a statistical semantic prior model can improve on the task of mapping images to their associated scene description. In this paper, we review the model and compare it to a novel conditional multi-way model for visual relationship detection, which does not include an explicitly trained visual prior model. We also discuss potential relationships between the proposed methods and memory models of the human brain.

Click to Read Paper and Get Code
In recent years a number of large-scale triple-oriented knowledge graphs have been generated and various models have been proposed to perform learning in those graphs. Most knowledge graphs are static and reflect the world in its current state. In reality, of course, the state of the world is changing: a healthy person becomes diagnosed with a disease and a new president is inaugurated. In this paper, we extend models for static knowledge graphs to temporal knowledge graphs. This enables us to store episodic data and to generalize to new facts (inductive learning). We generalize leading learning models for static knowledge graphs (i.e., Tucker, RESCAL, HolE, ComplEx, DistMult) to temporal knowledge graphs. In particular, we introduce a new tensor model, ConT, with superior generalization performance. The performances of all proposed models are analyzed on two different datasets: the Global Database of Events, Language, and Tone (GDELT) and the database for Integrated Conflict Early Warning System (ICEWS). We argue that temporal knowledge graph embeddings might be models also for cognitive episodic memory (facts we remember and can recollect) and that a semantic memory (current facts we know) can be generated from episodic memory by a marginalization operation. We validate this episodic-to-semantic projection hypothesis with the ICEWS dataset.

* 23 pages, 3 figures
Click to Read Paper and Get Code
In this work, we propose the first quantum Ans\"atze for the statistical relational learning on knowledge graphs using parametric quantum circuits. We introduce two types of variational quantum circuits for knowledge graph embedding. Inspired by the classical representation learning, we first consider latent features for entities as coefficients of quantum states, while predicates are characterized by parametric gates acting on the quantum states. For the first model, the quantum advantages disappear when it comes to the optimization of this model. Therefore, we introduce a second quantum circuit model where embeddings of entities are generated from parameterized quantum gates acting on the pure quantum state. The benefit of the second method is that the quantum embeddings can be trained efficiently meanwhile preserving the quantum advantages. We show the proposed methods can achieve comparable results to the state-of-the-art classical models, e.g., RESCAL, DistMult. Furthermore, after optimizing the models, the complexity of inductive inference on the knowledge graphs might be reduced with respect to the number of entities.

* Advanced Quantum Technologies, 2019
Click to Read Paper and Get Code