Models, code, and papers for "Yuyi Wang":

VC-Dimension Based Generalization Bounds for Relational Learning

Jul 04, 2018
Ondrej Kuzelka, Yuyi Wang, Steven Schockaert

In many applications of relational learning, the available data can be seen as a sample from a larger relational structure (e.g. we may be given a small fragment from some social network). In this paper we are particularly concerned with scenarios in which we can assume that (i) the domain elements appearing in the given sample have been uniformly sampled without replacement from the (unknown) full domain and (ii) the sample is complete for these domain elements (i.e. it is the full substructure induced by these elements). Within this setting, we study bounds on the error of sufficient statistics of relational models that are estimated on the available data. As our main result, we prove a bound based on a variant of the Vapnik-Chervonenkis dimension which is suitable for relational data.

* Longer version of paper accepted at ECML PKDD 2018 

  Click for Model/Code and Paper
On the ERM Principle with Networked Data

Nov 22, 2017
Yuanhong Wang, Yuyi Wang, Xingwu Liu, Juhua Pu

Networked data, in which every training example involves two objects and may share some common objects with others, is used in many machine learning tasks such as learning to rank and link prediction. A challenge of learning from networked examples is that target values are not known for some pairs of objects. In this case, neither the classical i.i.d.\ assumption nor techniques based on complete U-statistics can be used. Most existing theoretical results of this problem only deal with the classical empirical risk minimization (ERM) principle that always weights every example equally, but this strategy leads to unsatisfactory bounds. We consider general weighted ERM and show new universal risk bounds for this problem. These new bounds naturally define an optimization problem which leads to appropriate weights for networked examples. Though this optimization problem is not convex in general, we devise a new fully polynomial-time approximation scheme (FPTAS) to solve it.

* accepted by AAAI. arXiv admin note: substantial text overlap with arXiv:math/0702683 by other authors 

  Click for Model/Code and Paper
Learning from networked examples

Jun 03, 2017
Yuyi Wang, Jan Ramon, Zheng-Chu Guo

Many machine learning algorithms are based on the assumption that training examples are drawn independently. However, this assumption does not hold anymore when learning from a networked sample because two or more training examples may share some common objects, and hence share the features of these shared objects. We show that the classic approach of ignoring this problem potentially can have a harmful effect on the accuracy of statistics, and then consider alternatives. One of these is to only use independent examples, discarding other information. However, this is clearly suboptimal. We analyze sample error bounds in this networked setting, providing significantly improved results. An important component of our approach is formed by efficient sample weighting schemes, which leads to novel concentration inequalities.


  Click for Model/Code and Paper
Learning from networked examples in a k-partite graph

Feb 18, 2017
Yuyi Wang, Jan Ramon, Zheng-Chu Guo

Many machine learning algorithms are based on the assumption that training examples are drawn independently. However, this assumption does not hold anymore when learning from a networked sample where two or more training examples may share common features. We propose an efficient weighting method for learning from networked examples and show the sample error bound which is better than previous work.

* a special case 

  Click for Model/Code and Paper
McDiarmid-Type Inequalities for Graph-Dependent Variables and Stability Bounds

Sep 09, 2019
Rui Ray Zhang, Xingwu Liu, Yuyi Wang, Liwei Wang

A crucial assumption in most statistical learning theory is that samples are independently and identically distributed (i.i.d.). However, for many real applications, the i.i.d. assumption does not hold. We consider learning problems in which examples are dependent and their dependency relation is characterized by a graph. To establish algorithm-dependent generalization theory for learning with non-i.i.d. data, we first prove novel McDiarmid-type concentration inequalities for Lipschitz functions of graph-dependent random variables. We show that concentration relies on the forest complexity of the graph, which characterizes the strength of the dependency. We demonstrate that for many types of dependent data, the forest complexity is small and thus implies good concentration. Based on our new inequalities we are able to build stability bounds for learning from graph-dependent data.

* accepted as NeurIPS 2019 spotlight paper 

  Click for Model/Code and Paper
Variational Quantum Circuit Model for Knowledge Graphs Embedding

Feb 19, 2019
Yunpu Ma, Volker Tresp, Liming Zhao, Yuyi Wang

In this work, we propose the first quantum Ans\"atze for the statistical relational learning on knowledge graphs using parametric quantum circuits. We introduce two types of variational quantum circuits for knowledge graph embedding. Inspired by the classical representation learning, we first consider latent features for entities as coefficients of quantum states, while predicates are characterized by parametric gates acting on the quantum states. For the first model, the quantum advantages disappear when it comes to the optimization of this model. Therefore, we introduce a second quantum circuit model where embeddings of entities are generated from parameterized quantum gates acting on the pure quantum state. The benefit of the second method is that the quantum embeddings can be trained efficiently meanwhile preserving the quantum advantages. We show the proposed methods can achieve comparable results to the state-of-the-art classical models, e.g., RESCAL, DistMult. Furthermore, after optimizing the models, the complexity of inductive inference on the knowledge graphs might be reduced with respect to the number of entities.

* Advanced Quantum Technologies, 2019 

  Click for Model/Code and Paper
MIDI-VAE: Modeling Dynamics and Instrumentation of Music with Applications to Style Transfer

Sep 20, 2018
Gino Brunner, Andres Konrad, Yuyi Wang, Roger Wattenhofer

We introduce MIDI-VAE, a neural network model based on Variational Autoencoders that is capable of handling polyphonic music with multiple instrument tracks, as well as modeling the dynamics of music by incorporating note durations and velocities. We show that MIDI-VAE can perform style transfer on symbolic music by automatically changing pitches, dynamics and instruments of a music piece from, e.g., a Classical to a Jazz style. We evaluate the efficacy of the style transfer by training separate style validation classifiers. Our model can also interpolate between short pieces of music, produce medleys and create mixtures of entire songs. The interpolations smoothly change pitches, dynamics and instrumentation to create a harmonic bridge between two music pieces. To the best of our knowledge, this work represents the first successful attempt at applying neural style transfer to complete musical compositions.

* Paper accepted at the 19th International Society for Music Information Retrieval Conference, ISMIR 2018, Paris, France 

  Click for Model/Code and Paper
Symbolic Music Genre Transfer with CycleGAN

Sep 20, 2018
Gino Brunner, Yuyi Wang, Roger Wattenhofer, Sumu Zhao

Deep generative models such as Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) have recently been applied to style and domain transfer for images, and in the case of VAEs, music. GAN-based models employing several generators and some form of cycle consistency loss have been among the most successful for image domain transfer. In this paper we apply such a model to symbolic music and show the feasibility of our approach for music genre transfer. Evaluations using separate genre classifiers show that the style transfer works well. In order to improve the fidelity of the transformed music, we add additional discriminators that cause the generators to keep the structure of the original music mostly intact, while still achieving strong genre transfer. Visual and audible results further show the potential of our approach. To the best of our knowledge, this paper represents the first application of GANs to symbolic music domain transfer.

* Paper accepted at the 30th International Conference on Tools with Artificial Intelligence, ICTAI 2018, Volos, Greece 

  Click for Model/Code and Paper
PAC-Reasoning in Relational Domains

Jul 04, 2018
Ondrej Kuzelka, Yuyi Wang, Jesse Davis, Steven Schockaert

We consider the problem of predicting plausible missing facts in relational data, given a set of imperfect logical rules. In particular, our aim is to provide bounds on the (expected) number of incorrect inferences that are made in this way. Since for classical inference it is in general impossible to bound this number in a non-trivial way, we consider two inference relations that weaken, but remain close in spirit to classical inference.

* Longer version of paper appearing in UAI 2018 

  Click for Model/Code and Paper
Relational Marginal Problems: Theory and Estimation

Apr 25, 2018
Ondrej Kuzelka, Yuyi Wang, Jesse Davis, Steven Schockaert

In the propositional setting, the marginal problem is to find a (maximum-entropy) distribution that has some given marginals. We study this problem in a relational setting and make the following contributions. First, we compare two different notions of relational marginals. Second, we show a duality between the resulting relational marginal problems and the maximum likelihood estimation of the parameters of relational models, which generalizes a well-known duality from the propositional setting. Third, by exploiting the relational marginal formulation, we present a statistically sound method to learn the parameters of relational models that will be applied in settings where the number of constants differs between the training and test data. Furthermore, based on a relational generalization of marginal polytopes, we characterize cases where the standard estimators based on feature's number of true groundings needs to be adjusted and we quantitatively characterize the consequences of these adjustments. Fourth, we prove bounds on expected errors of the estimated parameters, which allows us to lower-bound, among other things, the effective sample size of relational training data.

* Long version of a paper that appeared in AAAI 2018; added a paragraph to Related Work 

  Click for Model/Code and Paper
Natural Language Multitasking: Analyzing and Improving Syntactic Saliency of Hidden Representations

Jan 18, 2018
Gino Brunner, Yuyi Wang, Roger Wattenhofer, Michael Weigelt

We train multi-task autoencoders on linguistic tasks and analyze the learned hidden sentence representations. The representations change significantly when translation and part-of-speech decoders are added. The more decoders a model employs, the better it clusters sentences according to their syntactic similarity, as the representation space becomes less entangled. We explore the structure of the representation space by interpolating between sentences, which yields interesting pseudo-English sentences, many of which have recognizable syntactic structure. Lastly, we point out an interesting property of our models: The difference-vector between two sentences can be added to change a third sentence with similar features in a meaningful way.

* The 31st Annual Conference on Neural Information Processing (NIPS) - Workshop on Learning Disentangled Features: from Perception to Control, Long Beach, CA, December 2017 

  Click for Model/Code and Paper
JamBot: Music Theory Aware Chord Based Generation of Polyphonic Music with LSTMs

Nov 21, 2017
Gino Brunner, Yuyi Wang, Roger Wattenhofer, Jonas Wiesendanger

We propose a novel approach for the generation of polyphonic music based on LSTMs. We generate music in two steps. First, a chord LSTM predicts a chord progression based on a chord embedding. A second LSTM then generates polyphonic music from the predicted chord progression. The generated music sounds pleasing and harmonic, with only few dissonant notes. It has clear long-term structure that is similar to what a musician would play during a jam session. We show that our approach is sensible from a music theory perspective by evaluating the learned chord embeddings. Surprisingly, our simple model managed to extract the circle of fifths, an important tool in music theory, from the dataset.

* Paper presented at the 29th International Conference on Tools with Artificial Intelligence, ICTAI 2017, Boston, MA, USA 

  Click for Model/Code and Paper
Teaching a Machine to Read Maps with Deep Reinforcement Learning

Nov 20, 2017
Gino Brunner, Oliver Richter, Yuyi Wang, Roger Wattenhofer

The ability to use a 2D map to navigate a complex 3D environment is quite remarkable, and even difficult for many humans. Localization and navigation is also an important problem in domains such as robotics, and has recently become a focus of the deep reinforcement learning community. In this paper we teach a reinforcement learning agent to read a map in order to find the shortest way out of a random maze it has never seen before. Our system combines several state-of-the-art methods such as A3C and incorporates novel elements such as a recurrent localization cell. Our agent learns to localize itself based on 3D first person images and an approximate orientation angle. The agent generalizes well to bigger mazes, showing that it learned useful localization and navigation capabilities.

* Paper accepted at 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, New Orleans, Louisiana, USA 

  Click for Model/Code and Paper
VulDeePecker: A Deep Learning-Based System for Vulnerability Detection

Jan 05, 2018
Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, Yuyi Zhong

The automatic detection of software vulnerabilities is an important research problem. However, existing solutions to this problem rely on human experts to define features and often miss many vulnerabilities (i.e., incurring high false negative rate). In this paper, we initiate the study of using deep learning-based vulnerability detection to relieve human experts from the tedious and subjective task of manually defining features. Since deep learning is motivated to deal with problems that are very different from the problem of vulnerability detection, we need some guiding principles for applying deep learning to vulnerability detection. In particular, we need to find representations of software programs that are suitable for deep learning. For this purpose, we propose using code gadgets to represent programs and then transform them into vectors, where a code gadget is a number of (not necessarily consecutive) lines of code that are semantically related to each other. This leads to the design and implementation of a deep learning-based vulnerability detection system, called Vulnerability Deep Pecker (VulDeePecker). In order to evaluate VulDeePecker, we present the first vulnerability dataset for deep learning approaches. Experimental results show that VulDeePecker can achieve much fewer false negatives (with reasonable false positives) than other approaches. We further apply VulDeePecker to 3 software products (namely Xen, Seamonkey, and Libav) and detect 4 vulnerabilities, which are not reported in the National Vulnerability Database but were "silently" patched by the vendors when releasing later versions of these products; in contrast, these vulnerabilities are almost entirely missed by the other vulnerability detection systems we experimented with.


  Click for Model/Code and Paper
CAN-NER: Convolutional Attention Network for Chinese Named Entity Recognition

Apr 30, 2019
Yuying Zhu, Guoxin Wang, Börje F. Karlsson

Named entity recognition (NER) in Chinese is essential but difficult because of the lack of natural delimiters. Therefore, Chinese Word Segmentation (CWS) is usually considered as the first step for Chinese NER. However, models based on word-level embeddings and lexicon features often suffer from segmentation errors and out-of-vocabulary (OOV) words. In this paper, we investigate a Convolutional Attention Network called CAN for Chinese NER, which consists of a character-based convolutional neural network (CNN) with local-attention layer and a gated recurrent unit (GRU) with global self-attention layer to capture the information from adjacent characters and sentence contexts. Also, compared to other models, not depending on any external resources like lexicons and employing small size of char embeddings make our model more practical. Extensive experimental results show that our approach outperforms state-of-the-art methods without word embedding and external lexicon resources on different domain datasets including Weibo, MSRA and Chinese Resume NER dataset.

* This paper is accepted by NAACL-HLT 2019 

  Click for Model/Code and Paper
CAN-NER: Convolutional Attention Network forChinese Named Entity Recognition

Apr 03, 2019
Yuying Zhu, Guoxin Wang, Börje F. Karlsson

Named entity recognition (NER) in Chinese is essential but difficult because of the lack of natural delimiters. Therefore, Chinese Word Segmentation (CWS) is usually considered as the first step for Chinese NER. However, models based on word-level embeddings and lexicon features often suffer from segmentation errors and out-of-vocabulary (OOV) words. In this paper, we investigate a Convolutional Attention Network called CAN for Chinese NER, which consists of a character-based convolutional neural network (CNN) with local-attention layer and a gated recurrent unit (GRU) with global self-attention layer to capture the information from adjacent characters and sentence contexts. Also, compared to other models, not depending on any external resources like lexicons and employing small size of char embeddings make our model more practical. Extensive experimental results show that our approach outperforms state-of-the-art methods without word embedding and external lexicon resources on different domain datasets including Weibo, MSRA and Chinese Resume NER dataset.


  Click for Model/Code and Paper
Improving Transferability of Adversarial Examples with Input Diversity

Jun 11, 2018
Cihang Xie, Zhishuai Zhang, Jianyu Wang, Yuyin Zhou, Zhou Ren, Alan Yuille

Though convolutional neural networks have achieved state-of-the-art performance on various vision tasks, they are extremely vulnerable to adversarial examples, which are obtained by adding human-imperceptible perturbations to the original images. Adversarial examples can thus be used as an useful tool to evaluate and select the most robust models in safety-critical applications. However, most of the existing adversarial attacks only achieve relatively low success rates under the challenging black-box setting, where the attackers have no knowledge of the model structure and parameters. To this end, we propose to improve the transferability of adversarial examples by creating diverse input patterns. Instead of only using the original images to generate adversarial examples, our method applies random transformations to the input images at each iteration. Extensive experiments on ImageNet show that the proposed attack method can generate adversarial examples that transfer much better to different networks than existing baselines. To further improve the transferability, we (1) integrate the recently proposed momentum method into the attack process; and (2) attack an ensemble of networks simultaneously. By evaluating our method against top defense submissions and official baselines from NIPS 2017 adversarial competition, this enhanced attack reaches an average success rate of 73.0%, which outperforms the top 1 attack submission in the NIPS competition by a large margin of 6.6%. We hope that our proposed attack strategy can serve as a benchmark for evaluating the robustness of networks to adversaries and the effectiveness of different defense methods in future. The code is public available at https://github.com/cihangxie/DI-2-FGSM.

* Submitted to ECCV 2018, code available at https://github.com/cihangxie/DI-2-FGSM 

  Click for Model/Code and Paper
Adversarial Examples for Semantic Segmentation and Object Detection

Jul 21, 2017
Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, Alan Yuille

It has been well demonstrated that adversarial examples, i.e., natural images with visually imperceptible perturbations added, generally exist for deep networks to fail on image classification. In this paper, we extend adversarial examples to semantic segmentation and object detection which are much more difficult. Our observation is that both segmentation and detection are based on classifying multiple targets on an image (e.g., the basic target is a pixel or a receptive field in segmentation, and an object proposal in detection), which inspires us to optimize a loss function over a set of pixels/proposals for generating adversarial perturbations. Based on this idea, we propose a novel algorithm named Dense Adversary Generation (DAG), which generates a large family of adversarial examples, and applies to a wide range of state-of-the-art deep networks for segmentation and detection. We also find that the adversarial perturbations can be transferred across networks with different training data, based on different architectures, and even for different recognition tasks. In particular, the transferability across networks with the same architecture is more significant than in other cases. Besides, summing up heterogeneous perturbations often leads to better transfer performance, which provides an effective method of black-box adversarial attack.

* To appear in ICCV 2017 

  Click for Model/Code and Paper
Multi-Scale Attentional Network for Multi-Focal Segmentation of Active Bleed after Pelvic Fractures

Jun 23, 2019
Yuyin Zhou, David Dreizin, Yingwei Li, Zhishuai Zhang, Yan Wang, Alan Yuille

Trauma is the worldwide leading cause of death and disability in those younger than 45 years, and pelvic fractures are a major source of morbidity and mortality. Automated segmentation of multiple foci of arterial bleeding from abdominopelvic trauma CT could provide rapid objective measurements of the total extent of active bleeding, potentially augmenting outcome prediction at the point of care, while improving patient triage, allocation of appropriate resources, and time to definitive intervention. In spite of the importance of active bleeding in the quick tempo of trauma care, the task is still quite challenging due to the variable contrast, intensity, location, size, shape, and multiplicity of bleeding foci. Existing work [4] presents a heuristic rule-based segmentation technique which requires multiple stages and cannot be efficiently optimized end-to-end. To this end, we present, Multi-Scale Attentional Network (MSAN), the first yet reliable end-to-end network, for automated segmentation of active hemorrhage from contrast-enhanced trauma CT scans. MSAN consists of the following components: 1) an encoder which fully integrates the global contextual information from holistic 2D slices; 2) a multi-scale strategy applied both in the training stage and the inference stage to handle the challenges induced by variation of target sizes; 3) an attentional module to further refine the deep features, leading to better segmentation quality; and 4) a multi-view mechanism to fully leverage the 3D information. Our MSAN reports a significant improvement of more than 7% compared to prior arts in terms of DSC.

* tech report 

  Click for Model/Code and Paper
Multi-View Multi-Instance Multi-Label Learning based on Collaborative Matrix Factorization

May 15, 2019
Yuying Xing, Guoxian Yu, Carlotta Domeniconi, Jun Wang, Zili Zhang, Maozu Guo

Multi-view Multi-instance Multi-label Learning(M3L) deals with complex objects encompassing diverse instances, represented with different feature views, and annotated with multiple labels. Existing M3L solutions only partially explore the inter or intra relations between objects (or bags), instances, and labels, which can convey important contextual information for M3L. As such, they may have a compromised performance. In this paper, we propose a collaborative matrix factorization based solution called M3Lcmf. M3Lcmf first uses a heterogeneous network composed of nodes of bags, instances, and labels, to encode different types of relations via multiple relational data matrices. To preserve the intrinsic structure of the data matrices, M3Lcmf collaboratively factorizes them into low-rank matrices, explores the latent relationships between bags, instances, and labels, and selectively merges the data matrices. An aggregation scheme is further introduced to aggregate the instance-level labels into bag-level and to guide the factorization. An empirical study on benchmark datasets show that M3Lcmf outperforms other related competitive solutions both in the instance-level and bag-level prediction.

* 8 pages, 8 figures, uses aaai19.sty, accepted to AAAI2019 

  Click for Model/Code and Paper