Models, code, and papers for "Zaiqing Nie":

Generating Questions for Knowledge Bases via Incorporating Diversified Contexts and Answer-Aware Loss

Oct 29, 2019
Cao Liu, Kang Liu, Shizhu He, Zaiqing Nie, Jun Zhao

We tackle the task of question generation over knowledge bases. Conventional methods for this task neglect two crucial research issues: 1) the given predicate needs to be expressed; 2) the answer to the generated question needs to be definitive. In this paper, we strive toward the above two issues via incorporating diversified contexts and answer-aware loss. Specifically, we propose a neural encoder-decoder model with multi-level copy mechanisms to generate such questions. Furthermore, the answer aware loss is introduced to make generated questions corresponding to more definitive answers. Experiments demonstrate that our model achieves state-of-the-art performance. Meanwhile, such generated question can express the given predicate and correspond to a definitive answer.

* Accepted to EMNLP 2019 

  Click for Model/Code and Paper
Incorporating Interlocutor-Aware Context into Response Generation on Multi-Party Chatbots

Oct 29, 2019
Cao Liu, Kang Liu, Shizhu He, Zaiqing Nie, Jun Zhao

Conventional chatbots focus on two-party response generation, which simplifies the real dialogue scene. In this paper, we strive toward a novel task of Response Generation on Multi-Party Chatbot (RGMPC), where the generated responses heavily rely on the interlocutors' roles (e.g., speaker and addressee) and their utterances. Unfortunately, complex interactions among the interlocutors' roles make it challenging to precisely capture conversational contexts and interlocutors' information. Facing this challenge, we present a response generation model which incorporates Interlocutor-aware Contexts into Recurrent Encoder-Decoder frameworks (ICRED) for RGMPC. Specifically, we employ interactive representations to capture dialogue contexts for different interlocutors. Moreover, we leverage an addressee memory to enhance contextual interlocutor information for the target addressee. Finally, we construct a corpus for RGMPC based on an existing open-access dataset. Automatic and manual evaluations demonstrate that the ICRED remarkably outperforms strong baselines.

* Accepted to CoNLL 2019 

  Click for Model/Code and Paper
Learning Personalized End-to-End Goal-Oriented Dialog

Nov 12, 2018
Liangchen Luo, Wenhao Huang, Qi Zeng, Zaiqing Nie, Xu Sun

Most existing works on dialog systems only consider conversation content while neglecting the personality of the user the bot is interacting with, which begets several unsolved issues. In this paper, we present a personalized end-to-end model in an attempt to leverage personalization in goal-oriented dialogs. We first introduce a Profile Model which encodes user profiles into distributed embeddings and refers to conversation history from other similar users. Then a Preference Model captures user preferences over knowledge base entities to handle the ambiguity in user requests. The two models are combined into the Personalized MemN2N. Experiments show that the proposed model achieves qualitative performance improvements over state-of-the-art methods. As for human evaluation, it also outperforms other approaches in terms of task completion rate and user satisfaction.

* Accepted by AAAI 2019 

  Click for Model/Code and Paper
Understanding Semantics from Speech Through Pre-training

Sep 24, 2019
Pengwei Wang, Liangchen Wei, Yong Cao, Jinghui Xie, Yuji Cao, Zaiqing Nie

End-to-end Spoken Language Understanding (SLU) is proposed to infer the semantic meaning directly from audio features without intermediate text representation. Although the acoustic model component of an end-to-end SLU system can be pre-trained with Automatic Speech Recognition (ASR) targets, the SLU component can only learn semantic features from limited task-specific training data. In this paper, for the first time we propose to do large-scale unsupervised pre-training for the SLU component of an end-to-end SLU system, so that the SLU component may preserve semantic features from massive unlabeled audio data. As the output of the acoustic model component, i.e. phoneme posterior sequences, has much different characteristic from text sequences, we propose a novel pre-training model called BERT-PLM, which stands for Bidirectional Encoder Representations from Transformers through Permutation Language Modeling. BERT-PLM trains the SLU component on unlabeled data through a regression objective equivalent to the partial permutation language modeling objective, while leverages full bi-directional context information with BERT networks. The experiment results show that our approach out-perform the state-of-the-art end-to-end systems with over 12.5% error reduction.


  Click for Model/Code and Paper