In person re-identification (re-ID),In person re-identification (re-ID), we usually refer the challenges of this task to variances in visual factors such as the viewpoint, pose, illumination and background. In spite of acknowledging these factors to be influential, quantitative studies on how they affect a re-ID system are still lacking.To gain insights in this scientific campaign, this paper makes an early attempt in studying a particular factor, viewpoint. We narrow the viewpoint problem down to the pedestrian rotation angle to obtain focused conclusions. In this regard, this paper makes two contributions to the community. First, we introduce a large-scale synthetic data engine, PersonX. Composed of hand-crafted 3D person models, the salient characteristic of this engine is "controllable". That is, we are able to synthesize pedestrians by setting the visual variables to arbitrary values. Second, on the 3D data engine, we quantitatively analyze the influence of pedestrian rotation angle on re-ID accuracy. Comprehensively, the person rotation angles are precisely customized from 0 to 360, allowing us to investigate its effect on the training, query, and gallery sets. Extensive experiment helps us gain deeper understanding of the fundamental problems in person re-ID. Our research also provides beneficial insights for dataset building and future practical usage, e.g., a person of a side view makes a better query.

* 9 pages, 7 figures
Click to Read Paper
VAE requires the standard Gaussian distribution as a prior in the latent space. Since all codes tend to follow the same prior, it often suffers the so-called "posterior collapse". To avoid this, this paper introduces the class specific distribution for the latent code. But different from CVAE, we present a method for disentangling the latent space into the label relevant and irrelevant dimensions, $\bm{\mathrm{z}}_s$ and $\bm{\mathrm{z}}_u$, for a single input. We apply two separated encoders to map the input into $\bm{\mathrm{z}}_s$ and $\bm{\mathrm{z}}_u$ respectively, and then give the concatenated code to the decoder to reconstruct the input. The label irrelevant code $\bm{\mathrm{z}}_u$ represent the common characteristics of all inputs, hence they are constrained by the standard Gaussian, and their encoder is trained in amortized variational inference way, like VAE. While $\bm{\mathrm{z}}_s$ is assumed to follow the Gaussian mixture distribution in which each component corresponds to a particular class. The parameters for the Gaussian components in $\bm{\mathrm{z}}_s$ encoder are optimized by the label supervision in a global stochastic way. In theory, we show that our method is actually equivalent to adding a KL divergence term on the joint distribution of $\bm{\mathrm{z}}_s$ and the class label $c$, and it can directly increase the mutual information between $\bm{\mathrm{z}}_s$ and the label $c$. Our model can also be extended to GAN by adding a discriminator in the pixel domain so that it produces high quality and diverse images.

* 15 pages, 9 figures
Click to Read Paper
Traditional Chinese Medicine (TCM) is an influential form of medical treatment in China and surrounding areas. In this paper, we propose a TCM prescription generation task that aims to automatically generate a herbal medicine prescription based on textual symptom descriptions. Sequence-to-sequence (seq2seq) model has been successful in dealing with sequence generation tasks. We explore a potential end-to-end solution to the TCM prescription generation task using seq2seq models. However, experiments show that directly applying seq2seq model leads to unfruitful results due to the repetition problem. To solve the problem, we propose a novel decoder with coverage mechanism and a novel soft loss function. The experimental results demonstrate the effectiveness of the proposed approach. Judged by professors who excel in TCM, the generated prescriptions are rated 7.3 out of 10. It shows that the model can indeed help with the prescribing procedure in real life.

Click to Read Paper
In recent years, reinforcement learning (RL) methods have been applied to model gameplay with great success, achieving super-human performance in various environments, such as Atari, Go, and Poker. However, those studies mostly focus on winning the game and have largely ignored the rich and complex human motivations, which are essential for understanding different players' diverse behaviors. In this paper, we present a novel method called Multi-Motivation Behavior Modeling (MMBM) that takes the multifaceted human motivations into consideration and models the underlying value structure of the players using inverse RL. Our approach does not require the access to the dynamic of the system, making it feasible to model complex interactive environments such as massively multiplayer online games. MMBM is tested on the World of Warcraft Avatar History dataset, which recorded over 70,000 users' gameplay spanning three years period. Our model reveals the significant difference of value structures among different player groups. Using the results of motivation modeling, we also predict and explain their diverse gameplay behaviors and provide a quantitative assessment of how the redesign of the game environment impacts players' behaviors.

Click to Read Paper
Recent studies have used deep residual convolutional neural networks (CNNs) for JPEG compression artifact reduction. This study proposes a scalable CNN called S-Net. Our approach effectively adjusts the network scale dynamically in a multitask system for real-time operation with little performance loss. It offers a simple and direct technique to evaluate the performance gains obtained with increasing network depth, and it is helpful for removing redundant network layers to maximize the network efficiency. We implement our architecture using the Keras framework with the TensorFlow backend on an NVIDIA K80 GPU server. We train our models on the DIV2K dataset and evaluate their performance on public benchmark datasets. To validate the generality and universality of the proposed method, we created and utilized a new dataset, called WIN143, for over-processed images evaluation. Experimental results indicate that our proposed approach outperforms other CNN-based methods and achieves state-of-the-art performance.

* accepted by Journal of Electronic Imaging
Click to Read Paper
We propose a novel deep neural network architecture for the challenging problem of single image dehazing, which aims to recover the clear image from a degraded hazy image. Instead of relying on hand-crafted image priors or explicitly estimating the components of the widely used atmospheric scattering model, our end-to-end system directly generates the clear image from an input hazy image. The proposed network has an encoder-decoder architecture with skip connections and instance normalization. We adopt the convolutional layers of the pre-trained VGG network as encoder to exploit the representation power of deep features, and demonstrate the effectiveness of instance normalization for image dehazing. Our simple yet effective network outperforms the state-of-the-art methods by a large margin on the benchmark datasets.

Click to Read Paper
Estimating the travel time of a path is of great importance to smart urban mobility. Existing approaches are either based on estimating the time cost of each road segment which are not able to capture many cross-segment complex factors, or designed heuristically in a non-learning-based way which fail to utilize the existing abundant temporal labels of the data, i.e., the time stamp of each trajectory point. In this paper, we leverage on new development of deep neural networks and propose a novel auxiliary supervision model, namely DeepTravel, that can automatically and effectively extract different features, as well as make full use of the temporal labels of the trajectory data. We have conducted comprehensive experiments on real datasets to demonstrate the out-performance of DeepTravel over existing approaches.

Click to Read Paper
This paper proposes the SVDNet for retrieval problems, with focus on the application of person re-identification (re-ID). We view each weight vector within a fully connected (FC) layer in a convolutional neuron network (CNN) as a projection basis. It is observed that the weight vectors are usually highly correlated. This problem leads to correlations among entries of the FC descriptor, and compromises the retrieval performance based on the Euclidean distance. To address the problem, this paper proposes to optimize the deep representation learning process with Singular Vector Decomposition (SVD). Specifically, with the restraint and relaxation iteration (RRI) training scheme, we are able to iteratively integrate the orthogonality constraint in CNN training, yielding the so-called SVDNet. We conduct experiments on the Market-1501, CUHK03, and Duke datasets, and show that RRI effectively reduces the correlation among the projection vectors, produces more discriminative FC descriptors, and significantly improves the re-ID accuracy. On the Market-1501 dataset, for instance, rank-1 accuracy is improved from 55.3% to 80.5% for CaffeNet, and from 73.8% to 82.3% for ResNet-50.

* accepted as spotlight to ICCV 2017
Click to Read Paper
Our FRDC_QA team participated in the QA-Lab English subtask of the NTCIR-11. In this paper, we describe our system for solving real-world university entrance exam questions, which are related to world history. Wikipedia is used as the main external resource for our system. Since problems with choosing right/wrong sentence from multiple sentence choices account for about two-thirds of the total, we individually design a classification based model for solving this type of questions. For other types of questions, we also design some simple methods.

* 5 pages, no figure
Click to Read Paper
Annotating a large number of training images is very time-consuming. In this background, this paper focuses on learning from easy-to-acquire web data and utilizes the learned model for fine-grained image classification in labeled datasets. Currently, the performance gain from training with web data is incremental, like a common saying "better than nothing, but not by much". Conventionally, the community looks to correcting the noisy web labels to select informative samples. In this work, we first systematically study the built-in gap between the web and standard datasets, i.e. different data distributions between the two kinds of data. Then, in addition to using web labels, we present an unsupervised object localization method, which provides critical insights into the object density and scale in web images. Specifically, we design two constraints on web data to substantially reduce the difference of data distributions for the web and standard datasets. First, we present a method to control the scale, localization and number of objects in the detected region. Second, we propose to select the regions containing objects that are consistent with the web tag. Based on the two constraints, we are able to process web images to reduce the gap, and the processed web data is used to better assist the standard dataset to train CNNs. Experiments on several fine-grained image classification datasets confirm that our method performs favorably against the state-of-the-art methods.

* 13 pages, 9 figures, 6 tables
Click to Read Paper
The existing still-static deep learning based saliency researches do not consider the weighting and highlighting of extracted features from different layers, all features contribute equally to the final saliency decision-making. Such methods always evenly detect all "potentially significant regions" and unable to highlight the key salient object, resulting in detection failure of dynamic scenes. In this paper, based on the fact that salient areas in videos are relatively small and concentrated, we propose a \textbf{key salient object re-augmentation method (KSORA) using top-down semantic knowledge and bottom-up feature guidance} to improve detection accuracy in video scenes. KSORA includes two sub-modules (WFE and KOS): WFE processes local salient feature selection using bottom-up strategy, while KOS ranks each object in global fashion by top-down statistical knowledge, and chooses the most critical object area for local enhancement. The proposed KSORA can not only strengthen the saliency value of the local key salient object but also ensure global saliency consistency. Results on three benchmark datasets suggest that our model has the capability of improving the detection accuracy on complex scenes. The significant performance of KSORA, with a speed of 17FPS on modern GPUs, has been verified by comparisons with other ten state-of-the-art algorithms.

* 6 figures, 10 pages
Click to Read Paper
Currently, the neural network architecture design is mostly guided by the \emph{indirect} metric of computation complexity, i.e., FLOPs. However, the \emph{direct} metric, e.g., speed, also depends on the other factors such as memory access cost and platform characterics. Thus, this work proposes to evaluate the direct metric on the target platform, beyond only considering FLOPs. Based on a series of controlled experiments, this work derives several practical \emph{guidelines} for efficient network design. Accordingly, a new architecture is presented, called \emph{ShuffleNet V2}. Comprehensive ablation experiments verify that our model is the state-of-the-art in terms of speed and accuracy tradeoff.

Click to Read Paper
Being able to predict the crowd flows in each and every part of a city, especially in irregular regions, is strategically important for traffic control, risk assessment, and public safety. However, it is very challenging because of interactions and spatial correlations between different regions. In addition, it is affected by many factors: i) multiple temporal correlations among different time intervals: closeness, period, trend; ii) complex external influential factors: weather, events; iii) meta features: time of the day, day of the week, and so on. In this paper, we formulate crowd flow forecasting in irregular regions as a spatio-temporal graph (STG) prediction problem in which each node represents a region with time-varying flows. By extending graph convolution to handle the spatial information, we propose using spatial graph convolution to build a multi-view graph convolutional network (MVGCN) for the crowd flow forecasting problem, where different views can capture different factors as mentioned above. We evaluate MVGCN using four real-world datasets (taxicabs and bikes) and extensive experimental results show that our approach outperforms the adaptations of state-of-the-art methods. And we have developed a crowd flow forecasting system for irregular regions that can now be used internally.

* 11 pages, 10 figures, 5 tables. Submitted to TKDE
Click to Read Paper
Data-driven saliency detection has attracted strong interest as a result of applying convolutional neural networks to the detection of eye fixations. Although a number of imagebased salient object and fixation detection models have been proposed, video fixation detection still requires more exploration. Different from image analysis, motion and temporal information is a crucial factor affecting human attention when viewing video sequences. Although existing models based on local contrast and low-level features have been extensively researched, they failed to simultaneously consider interframe motion and temporal information across neighboring video frames, leading to unsatisfactory performance when handling complex scenes. To this end, we propose a novel and efficient video eye fixation detection model to improve the saliency detection performance. By simulating the memory mechanism and visual attention mechanism of human beings when watching a video, we propose a step-gained fully convolutional network by combining the memory information on the time axis with the motion information on the space axis while storing the saliency information of the current frame. The model is obtained through hierarchical training, which ensures the accuracy of the detection. Extensive experiments in comparison with 11 state-of-the-art methods are carried out, and the results show that our proposed model outperforms all 11 methods across a number of publicly available datasets.

* IEEE Transactions on Cybernetics ( Volume: PP, Issue: 99 ),2018
Click to Read Paper
Multi-view deep neural network is perhaps the most successful approach in 3D shape classification. However, the fusion of multi-view features based on max or average pooling lacks a view selection mechanism, limiting its application in, e.g., multi-view active object recognition by a robot. This paper presents VERAM, a recurrent attention model capable of actively selecting a sequence of views for highly accurate 3D shape classification. VERAM addresses an important issue commonly found in existing attention-based models, i.e., the unbalanced training of the subnetworks corresponding to next view estimation and shape classification. The classification subnetwork is easily overfitted while the view estimation one is usually poorly trained, leading to a suboptimal classification performance. This is surmounted by three essential view-enhancement strategies: 1) enhancing the information flow of gradient backpropagation for the view estimation subnetwork, 2) devising a highly informative reward function for the reinforcement training of view estimation and 3) formulating a novel loss function that explicitly circumvents view duplication. Taking grayscale image as input and AlexNet as CNN architecture, VERAM with 9 views achieves instance-level and class-level accuracy of 95:5% and 95:3% on ModelNet10, 93:7% and 92:1% on ModelNet40, both are the state-of-the-art performance under the same number of views.

* IEEE Transactions on Visualization and Computer Graphics, 2018
* Accepted by IEEE Transactions on Visualization and Computer Graphics. Corresponding Author: Kai Xu (kevin.kai.xu@gmail.com)
Click to Read Paper
We investigate the problem of $L_p$-norm constrained coding, i.e. converting signal into code that lies inside an $L_p$-ball and most faithfully reconstructs the signal. While previous works known as sparse coding have addressed the cases of $L_0$ and $L_1$ norms, more general cases with other $p$ values, especially with unknown $p$, remain a difficulty. We propose the Frank-Wolfe Network (F-W Net), whose architecture is inspired by unrolling and truncating the Frank-Wolfe algorithm for solving an $L_p$-norm constrained problem. We show that the Frank-Wolfe solver for the $L_p$-norm constraint leads to a novel closed-form nonlinear unit, which is parameterized by $p$ and termed $pool_p$. The $pool_p$ unit links the conventional pooling, activation, and normalization operations, making F-W Net distinct from existing deep networks either heuristically designed or converted from projected gradient descent algorithms. We further show that the hyper-parameter $p$ can be made learnable instead of pre-chosen in F-W Net, which gracefully solves the $L_p$-norm constrained coding problem with unknown $p$. We evaluate the performance of F-W Net on an extensive range of simulations as well as the task of handwritten digit recognition, where F-W Net exhibits strong learning capability. We then propose a convolutional version of F-W Net, and apply the convolutional F-W Net into image denoising and super-resolution tasks, where F-W Net all demonstrates impressive effectiveness, flexibility, and robustness.

* For code and pretrained models: https://github.com/sunke123/FW-Net
Click to Read Paper
Employing part-level features for pedestrian image description offers fine-grained information and has been verified as beneficial for person retrieval in very recent literature. A prerequisite of part discovery is that each part should be well located. Instead of using external cues, e.g., pose estimation, to directly locate parts, this paper lays emphasis on the content consistency within each part. Specifically, we target at learning discriminative part-informed features for person retrieval and make two contributions. (i) A network named Part-based Convolutional Baseline (PCB). Given an image input, it outputs a convolutional descriptor consisting of several part-level features. With a uniform partition strategy, PCB achieves competitive results with the state-of-the-art methods, proving itself as a strong convolutional baseline for person retrieval. (ii) A refined part pooling (RPP) method. Uniform partition inevitably incurs outliers in each part, which are in fact more similar to other parts. RPP re-assigns these outliers to the parts they are closest to, resulting in refined parts with enhanced within-part consistency. Experiment confirms that RPP allows PCB to gain another round of performance boost. For instance, on the Market-1501 dataset, we achieve (77.4+4.2)% mAP and (92.3+1.5)% rank-1 accuracy, surpassing the state of the art by a large margin.

Click to Read Paper
In the age of information explosion, image classification is the key technology of dealing with and organizing a large number of image data. Currently, the classical image classification algorithms are mostly based on RGB images or grayscale images, and fail to make good use of the depth information about objects or scenes. The depth information in the images has a strong complementary effect, which can enhance the classification accuracy significantly. In this paper, we propose an image classification technology using principal component analysis based on multi-view depth characters. In detail, firstly, the depth image of the original image is estimated; secondly, depth characters are extracted from the RGB views and the depth view separately, and then the reducing dimension operation through the PCA is implemented. Eventually, the SVM is applied to image classification. The experimental results show that the method has good performance.

Click to Read Paper
A deep learning approach has been widely applied in sequence modeling problems. In terms of automatic speech recognition (ASR), its performance has significantly been improved by increasing large speech corpus and deeper neural network. Especially, recurrent neural network and deep convolutional neural network have been applied in ASR successfully. Given the arising problem of training speed, we build a novel deep recurrent convolutional network for acoustic modeling and then apply deep residual learning to it. Our experiments show that it has not only faster convergence speed but better recognition accuracy over traditional deep convolutional recurrent network. In the experiments, we compare the convergence speed of our novel deep recurrent convolutional networks and traditional deep convolutional recurrent networks. With faster convergence speed, our novel deep recurrent convolutional networks can reach the comparable performance. We further show that applying deep residual learning can boost the convergence speed of our novel deep recurret convolutional networks. Finally, we evaluate all our experimental networks by phoneme error rate (PER) with our proposed bidirectional statistical n-gram language model. Our evaluation results show that our newly proposed deep recurrent convolutional network applied with deep residual learning can reach the best PER of 17.33\% with the fastest convergence speed on TIMIT database. The outstanding performance of our novel deep recurrent convolutional neural network with deep residual learning indicates that it can be potentially adopted in other sequential problems.

* 11 pages, 13 figures
Click to Read Paper