Models, code, and papers for "Zhiwu Huang":

A Riemannian Network for SPD Matrix Learning

Dec 22, 2016
Zhiwu Huang, Luc Van Gool

Symmetric Positive Definite (SPD) matrix learning methods have become popular in many image and video processing tasks, thanks to their ability to learn appropriate statistical representations while respecting Riemannian geometry of underlying SPD manifolds. In this paper we build a Riemannian network architecture to open up a new direction of SPD matrix non-linear learning in a deep model. In particular, we devise bilinear mapping layers to transform input SPD matrices to more desirable SPD matrices, exploit eigenvalue rectification layers to apply a non-linear activation function to the new SPD matrices, and design an eigenvalue logarithm layer to perform Riemannian computing on the resulting SPD matrices for regular output layers. For training the proposed deep network, we exploit a new backpropagation with a variant of stochastic gradient descent on Stiefel manifolds to update the structured connection weights and the involved SPD matrix data. We show through experiments that the proposed SPD matrix network can be simply trained and outperform existing SPD matrix learning and state-of-the-art methods in three typical visual classification tasks.

* Revised arXiv version, AAAI-17 camera-ready 

  Click for Model/Code and Paper
Building Deep Networks on Grassmann Manifolds

Jan 29, 2018
Zhiwu Huang, Jiqing Wu, Luc Van Gool

Learning representations on Grassmann manifolds is popular in quite a few visual recognition tasks. In order to enable deep learning on Grassmann manifolds, this paper proposes a deep network architecture by generalizing the Euclidean network paradigm to Grassmann manifolds. In particular, we design full rank mapping layers to transform input Grassmannian data to more desirable ones, exploit re-orthonormalization layers to normalize the resulting matrices, study projection pooling layers to reduce the model complexity in the Grassmannian context, and devise projection mapping layers to respect Grassmannian geometry and meanwhile achieve Euclidean forms for regular output layers. To train the Grassmann networks, we exploit a stochastic gradient descent setting on manifolds of the connection weights, and study a matrix generalization of backpropagation to update the structured data. The evaluations on three visual recognition tasks show that our Grassmann networks have clear advantages over existing Grassmann learning methods, and achieve results comparable with state-of-the-art approaches.

* AAAI'18 paper 

  Click for Model/Code and Paper
Manifold-valued Image Generation with Wasserstein Adversarial Networks

Dec 05, 2017
Zhiwu Huang, Jiqing Wu, Luc Van Gool

Unsupervised image generation has recently received an increasing amount of attention thanks to the great success of generative adversarial networks (GANs), particularly Wasserstein GANs. Inspired by the paradigm of real-valued image generation, this paper makes the first attempt to formulate the problem of generating manifold-valued images, which are frequently encountered in real-world applications. For the study, we specially exploit three typical manifold-valued image generation tasks: hue-saturation-value (HSV) color image generation, chromaticity-brightness (CB) color image generation, and diffusion-tensor (DT) image generation. In order to produce such kinds of images as realistic as possible, we generalize the state-of-the-art technique of Wasserstein GANs to the manifold context with exploiting Riemannian geometry. For the proposed manifold-valued image generation problem, we recommend three benchmark datasets that are CIFAR-10 HSV/CB color images, ImageNet HSV/CB color images, UCL DT image datasets. On the three datasets, we experimentally demonstrate the proposed manifold-aware Wasserestein GAN can generate high quality manifold-valued images.


  Click for Model/Code and Paper
Covariance Pooling For Facial Expression Recognition

May 13, 2018
Dinesh Acharya, Zhiwu Huang, Danda Paudel, Luc Van Gool

Classifying facial expressions into different categories requires capturing regional distortions of facial landmarks. We believe that second-order statistics such as covariance is better able to capture such distortions in regional facial fea- tures. In this work, we explore the benefits of using a man- ifold network structure for covariance pooling to improve facial expression recognition. In particular, we first employ such kind of manifold networks in conjunction with tradi- tional convolutional networks for spatial pooling within in- dividual image feature maps in an end-to-end deep learning manner. By doing so, we are able to achieve a recognition accuracy of 58.14% on the validation set of Static Facial Expressions in the Wild (SFEW 2.0) and 87.0% on the vali- dation set of Real-World Affective Faces (RAF) Database. Both of these results are the best results we are aware of. Besides, we leverage covariance pooling to capture the tem- poral evolution of per-frame features for video-based facial expression recognition. Our reported results demonstrate the advantage of pooling image-set features temporally by stacking the designed manifold network of covariance pool-ing on top of convolutional network layers.


  Click for Model/Code and Paper
Deep Learning on Lie Groups for Skeleton-based Action Recognition

Apr 11, 2017
Zhiwu Huang, Chengde Wan, Thomas Probst, Luc Van Gool

In recent years, skeleton-based action recognition has become a popular 3D classification problem. State-of-the-art methods typically first represent each motion sequence as a high-dimensional trajectory on a Lie group with an additional dynamic time warping, and then shallowly learn favorable Lie group features. In this paper we incorporate the Lie group structure into a deep network architecture to learn more appropriate Lie group features for 3D action recognition. Within the network structure, we design rotation mapping layers to transform the input Lie group features into desirable ones, which are aligned better in the temporal domain. To reduce the high feature dimensionality, the architecture is equipped with rotation pooling layers for the elements on the Lie group. Furthermore, we propose a logarithm mapping layer to map the resulting manifold data into a tangent space that facilitates the application of regular output layers for the final classification. Evaluations of the proposed network for standard 3D human action recognition datasets clearly demonstrate its superiority over existing shallow Lie group feature learning methods as well as most conventional deep learning methods.

* Accepted to CVPR 2017 

  Click for Model/Code and Paper
On the Relation between Color Image Denoising and Classification

Apr 05, 2017
Jiqing Wu, Radu Timofte, Zhiwu Huang, Luc Van Gool

Large amount of image denoising literature focuses on single channel images and often experimentally validates the proposed methods on tens of images at most. In this paper, we investigate the interaction between denoising and classification on large scale dataset. Inspired by classification models, we propose a novel deep learning architecture for color (multichannel) image denoising and report on thousands of images from ImageNet dataset as well as commonly used imagery. We study the importance of (sufficient) training data, how semantic class information can be traded for improved denoising results. As a result, our method greatly improves PSNR performance by 0.34 - 0.51 dB on average over state-of-the art methods on large scale dataset. We conclude that it is beneficial to incorporate in classification models. On the other hand, we also study how noise affect classification performance. In the end, we come to a number of interesting conclusions, some being counter-intuitive.


  Click for Model/Code and Paper
Wasserstein Divergence for GANs

Sep 05, 2018
Jiqing Wu, Zhiwu Huang, Janine Thoma, Dinesh Acharya, Luc Van Gool

In many domains of computer vision, generative adversarial networks (GANs) have achieved great success, among which the family of Wasserstein GANs (WGANs) is considered to be state-of-the-art due to the theoretical contributions and competitive qualitative performance. However, it is very challenging to approximate the $k$-Lipschitz constraint required by the Wasserstein-1 metric~(W-met). In this paper, we propose a novel Wasserstein divergence~(W-div), which is a relaxed version of W-met and does not require the $k$-Lipschitz constraint. As a concrete application, we introduce a Wasserstein divergence objective for GANs~(WGAN-div), which can faithfully approximate W-div through optimization. Under various settings, including progressive growing training, we demonstrate the stability of the proposed WGAN-div owing to its theoretical and practical advantages over WGANs. Also, we study the quantitative and visual performance of WGAN-div on standard image synthesis benchmarks of computer vision, showing the superior performance of WGAN-div compared to the state-of-the-art methods.

* accepted by eccv_2018, correct minor errors 

  Click for Model/Code and Paper
Sliced Wasserstein Generative Models

Mar 05, 2018
Jiqing Wu, Zhiwu Huang, Wen Li, Janine Thoma, Luc Van Gool

In the paper, we introduce a model of sliced optimal transport (SOT), which measures the distribution affinity with sliced Wasserstein distance (SWD). Since SWD enjoys the property of factorizing high-dimensional joint distributions into their multiple one-dimensional marginal distributions, its dual and primal forms can be approximated easier compared to Wasserstein distance (WD). Thus, we propose two types of differentiable SOT blocks to equip modern generative frameworks---Auto-Encoders (AEs) and Generative Adversarial Networks (GANs)---with the primal and dual forms of SWD. The superiority of our SWAE and SWGAN over the state-of-the-art generative models is studied both qualitatively and quantitatively on standard benchmarks.


  Click for Model/Code and Paper
Cross Euclidean-to-Riemannian Metric Learning with Application to Face Recognition from Video

Jan 06, 2017
Zhiwu Huang, Ruiping Wang, Shiguang Shan, Luc Van Gool, Xilin Chen

Riemannian manifolds have been widely employed for video representations in visual classification tasks including video-based face recognition. The success mainly derives from learning a discriminant Riemannian metric which encodes the non-linear geometry of the underlying Riemannian manifolds. In this paper, we propose a novel metric learning framework to learn a distance metric across a Euclidean space and a Riemannian manifold to fuse the average appearance and pattern variation of faces within one video. The proposed metric learning framework can handle three typical tasks of video-based face recognition: Video-to-Still, Still-to-Video and Video-to-Video settings. To accomplish this new framework, by exploiting typical Riemannian geometries for kernel embedding, we map the source Euclidean space and Riemannian manifold into a common Euclidean subspace, each through a corresponding high-dimensional Reproducing Kernel Hilbert Space (RKHS). With this mapping, the problem of learning a cross-view metric between the two source heterogeneous spaces can be expressed as learning a single-view Euclidean distance metric in the target common Euclidean space. By learning information on heterogeneous data with the shared label, the discriminant metric in the common space improves face recognition from videos. Extensive experiments on four challenging video face databases demonstrate that the proposed framework has a clear advantage over the state-of-the-art methods in the three classical video-based face recognition tasks.


  Click for Model/Code and Paper
Improving Video Generation for Multi-functional Applications

Mar 14, 2018
Bernhard Kratzwald, Zhiwu Huang, Danda Pani Paudel, Acharya Dinesh, Luc Van Gool

In this paper, we aim to improve the state-of-the-art video generative adversarial networks (GANs) with a view towards multi-functional applications. Our improved video GAN model does not separate foreground from background nor dynamic from static patterns, but learns to generate the entire video clip conjointly. Our model can thus be trained to generate - and learn from - a broad set of videos with no restriction. This is achieved by designing a robust one-stream video generation architecture with an extension of the state-of-the-art Wasserstein GAN framework that allows for better convergence. The experimental results show that our improved video GAN model outperforms state-of-theart video generative models on multiple challenging datasets. Furthermore, we demonstrate the superiority of our model by successfully extending it to three challenging problems: video colorization, video inpainting, and future prediction. To the best of our knowledge, this is the first work using GANs to colorize and inpaint video clips.


  Click for Model/Code and Paper
Face Translation between Images and Videos using Identity-aware CycleGAN

Dec 04, 2017
Zhiwu Huang, Bernhard Kratzwald, Danda Pani Paudel, Jiqing Wu, Luc Van Gool

This paper presents a new problem of unpaired face translation between images and videos, which can be applied to facial video prediction and enhancement. In this problem there exist two major technical challenges: 1) designing a robust translation model between static images and dynamic videos, and 2) preserving facial identity during image-video translation. To address such two problems, we generalize the state-of-the-art image-to-image translation network (Cycle-Consistent Adversarial Networks) to the image-to-video/video-to-image translation context by exploiting a image-video translation model and an identity preservation model. In particular, we apply the state-of-the-art Wasserstein GAN technique to the setting of image-video translation for better convergence, and we meanwhile introduce a face verificator to ensure the identity. Experiments on standard image/video face datasets demonstrate the effectiveness of the proposed model in both terms of qualitative and quantitative evaluations.


  Click for Model/Code and Paper
Divide-and-Conquer Adversarial Learning for High-Resolution Image and Video Enhancement

Oct 23, 2019
Zhiwu Huang, Danda Pani Paudel, Guanju Li, Jiqing Wu, Radu Timofte, Luc Van Gool

This paper introduces a divide-and-conquer inspired adversarial learning (DACAL) approach for photo enhancement. The key idea is to decompose the photo enhancement process into hierarchically multiple sub-problems, which can be better conquered from bottom to up. On the top level, we propose a perception-based division to learn additive and multiplicative components, required to translate a low-quality image or video into its high-quality counterpart. On the intermediate level, we use a frequency-based division with generative adversarial network (GAN) to weakly supervise the photo enhancement process. On the lower level, we design a dimension-based division that enables the GAN model to better approximates the distribution distance on multiple independent one-dimensional data to train the GAN model. While considering all three hierarchies, we develop multiscale and recurrent training approaches to optimize the image and video enhancement process in a weakly-supervised manner. Both quantitative and qualitative results clearly demonstrate that the proposed DACAL achieves the state-of-the-art performance for high-resolution image and video enhancement.


  Click for Model/Code and Paper
Geometry-aware Similarity Learning on SPD Manifolds for Visual Recognition

Aug 17, 2016
Zhiwu Huang, Ruiping Wang, Xianqiu Li, Wenxian Liu, Shiguang Shan, Luc Van Gool, Xilin Chen

Symmetric Positive Definite (SPD) matrices have been widely used for data representation in many visual recognition tasks. The success mainly attributes to learning discriminative SPD matrices with encoding the Riemannian geometry of the underlying SPD manifold. In this paper, we propose a geometry-aware SPD similarity learning (SPDSL) framework to learn discriminative SPD features by directly pursuing manifold-manifold transformation matrix of column full-rank. Specifically, by exploiting the Riemannian geometry of the manifold of fixed-rank Positive Semidefinite (PSD) matrices, we present a new solution to reduce optimizing over the space of column full-rank transformation matrices to optimizing on the PSD manifold which has a well-established Riemannian structure. Under this solution, we exploit a new supervised SPD similarity learning technique to learn the transformation by regressing the similarities of selected SPD data pairs to their ground-truth similarities on the target SPD manifold. To optimize the proposed objective function, we further derive an algorithm on the PSD manifold. Evaluations on three visual classification tasks show the advantages of the proposed approach over the existing SPD-based discriminant learning methods.


  Click for Model/Code and Paper