Models, code, and papers for "Zihang Dai":

From Credit Assignment to Entropy Regularization: Two New Algorithms for Neural Sequence Prediction

Apr 29, 2018
Zihang Dai, Qizhe Xie, Eduard Hovy

In this work, we study the credit assignment problem in reward augmented maximum likelihood (RAML) learning, and establish a theoretical equivalence between the token-level counterpart of RAML and the entropy regularized reinforcement learning. Inspired by the connection, we propose two sequence prediction algorithms, one extending RAML with fine-grained credit assignment and the other improving Actor-Critic with a systematic entropy regularization. On two benchmark datasets, we show the proposed algorithms outperform RAML and Actor-Critic respectively, providing new alternatives to sequence prediction.

* ACL 2018 

  Click for Model/Code and Paper
CFO: Conditional Focused Neural Question Answering with Large-scale Knowledge Bases

Jul 04, 2016
Zihang Dai, Lei Li, Wei Xu

How can we enable computers to automatically answer questions like "Who created the character Harry Potter"? Carefully built knowledge bases provide rich sources of facts. However, it remains a challenge to answer factoid questions raised in natural language due to numerous expressions of one question. In particular, we focus on the most common questions --- ones that can be answered with a single fact in the knowledge base. We propose CFO, a Conditional Focused neural-network-based approach to answering factoid questions with knowledge bases. Our approach first zooms in a question to find more probable candidate subject mentions, and infers the final answers with a unified conditional probabilistic framework. Powered by deep recurrent neural networks and neural embeddings, our proposed CFO achieves an accuracy of 75.7% on a dataset of 108k questions - the largest public one to date. It outperforms the current state of the art by an absolute margin of 11.8%.

* Accepted by ACL 2016 

  Click for Model/Code and Paper
Re-examination of the Role of Latent Variables in Sequence Modeling

Feb 04, 2019
Zihang Dai, Guokun Lai, Yiming Yang, Shinjae Yoo

With latent variables, stochastic recurrent models have achieved state-of-the-art performance in modeling sound-wave sequence. However, opposite results are also observed in other domains, where standard recurrent networks often outperform stochastic models. To better understand this discrepancy, we re-examine the roles of latent variables in stochastic recurrent models for speech density estimation. Our analysis reveals that under the restriction of fully factorized output distribution in previous evaluations, the stochastic models were implicitly leveraging intra-step correlation but the standard recurrent baselines were prohibited to do so, resulting in an unfair comparison. To correct the unfairness, we remove such restriction in our re-examination, where all the models can explicitly leverage intra-step correlation with an auto-regressive structure. Over a diverse set of sequential data, including human speech, MIDI music, handwriting trajectory and frame-permuted speech, our results show that stochastic recurrent models fail to exhibit any practical advantage despite the claimed theoretical superiority. In contrast, standard recurrent models equipped with an auto-regressive output distribution consistently perform better, significantly advancing the state-of-the-art results on three speech datasets.

* Code available at https://github.com/zihangdai/reexamine-srnn 

  Click for Model/Code and Paper
Characterizing and Avoiding Negative Transfer

Nov 24, 2018
Zirui Wang, Zihang Dai, Barnabás Póczos, Jaime Carbonell

When labeled data is scarce for a specific target task, transfer learning often offers an effective solution by utilizing data from a related source task. However, when transferring knowledge from a less related source, it may inversely hurt the target performance, a phenomenon known as negative transfer. Despite its pervasiveness, negative transfer is usually described in an informal manner, lacking rigorous definition, careful analysis, or systematic treatment. This paper proposes a formal definition of negative transfer and analyzes three important aspects thereof. Stemming from this analysis, a novel technique is proposed to circumvent negative transfer by filtering out unrelated source data. Based on adversarial networks, the technique is highly generic and can be applied to a wide range of transfer learning algorithms. The proposed approach is evaluated on six state-of-the-art deep transfer methods via experiments on four benchmark datasets with varying levels of difficulty. Empirically, the proposed method consistently improves the performance of all baseline methods and largely avoids negative transfer, even when the source data is degenerate.


  Click for Model/Code and Paper
Fast and Simple Mixture of Softmaxes with BPE and Hybrid-LightRNN for Language Generation

Sep 25, 2018
Xiang Kong, Qizhe Xie, Zihang Dai, Eduard Hovy

Mixture of Softmaxes (MoS) has been shown to be effective at addressing the expressiveness limitation of Softmax-based models. Despite the known advantage, MoS is practically sealed by its large consumption of memory and computational time due to the need of computing multiple Softmaxes. In this work, we set out to unleash the power of MoS in practical applications by investigating improved word coding schemes, which could effectively reduce the vocabulary size and hence relieve the memory and computation burden. We show both BPE and our proposed Hybrid-LightRNN lead to improved encoding mechanisms that can halve the time and memory consumption of MoS without performance losses. With MoS, we achieve an improvement of 1.5 BLEU scores on IWSLT 2014 German-to-English corpus and an improvement of 0.76 CIDEr score on image captioning. Moreover, on the larger WMT 2014 machine translation dataset, our MoS-boosted Transformer yields 29.5 BLEU score for English-to-German and 42.1 BLEU score for English-to-French, outperforming the single-Softmax Transformer by 0.8 and 0.4 BLEU scores respectively and achieving the state-of-the-art result on WMT 2014 English-to-German task.


  Click for Model/Code and Paper
SwitchOut: an Efficient Data Augmentation Algorithm for Neural Machine Translation

Aug 28, 2018
Xinyi Wang, Hieu Pham, Zihang Dai, Graham Neubig

In this work, we examine methods for data augmentation for text-based tasks such as neural machine translation (NMT). We formulate the design of a data augmentation policy with desirable properties as an optimization problem, and derive a generic analytic solution. This solution not only subsumes some existing augmentation schemes, but also leads to an extremely simple data augmentation strategy for NMT: randomly replacing words in both the source sentence and the target sentence with other random words from their corresponding vocabularies. We name this method SwitchOut. Experiments on three translation datasets of different scales show that SwitchOut yields consistent improvements of about 0.5 BLEU, achieving better or comparable performances to strong alternatives such as word dropout (Sennrich et al., 2016a). Code to implement this method is included in the appendix.

* Accepted as a short paper at the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP 2018) 

  Click for Model/Code and Paper
Large-scale Cloze Test Dataset Created by Teachers

Aug 28, 2018
Qizhe Xie, Guokun Lai, Zihang Dai, Eduard Hovy

Cloze tests are widely adopted in language exams to evaluate students' language proficiency. In this paper, we propose the first large-scale human-created cloze test dataset CLOTH, containing questions used in middle-school and high-school language exams. With missing blanks carefully created by teachers and candidate choices purposely designed to be nuanced, CLOTH requires a deeper language understanding and a wider attention span than previously automatically-generated cloze datasets. We test the performance of dedicatedly designed baseline models including a language model trained on the One Billion Word Corpus and show humans outperform them by a significant margin. We investigate the source of the performance gap, trace model deficiencies to some distinct properties of CLOTH, and identify the limited ability of comprehending the long-term context to be the key bottleneck.

* EMNLP 2018 

  Click for Model/Code and Paper
An Interpretable Knowledge Transfer Model for Knowledge Base Completion

May 03, 2017
Qizhe Xie, Xuezhe Ma, Zihang Dai, Eduard Hovy

Knowledge bases are important resources for a variety of natural language processing tasks but suffer from incompleteness. We propose a novel embedding model, \emph{ITransF}, to perform knowledge base completion. Equipped with a sparse attention mechanism, ITransF discovers hidden concepts of relations and transfer statistical strength through the sharing of concepts. Moreover, the learned associations between relations and concepts, which are represented by sparse attention vectors, can be interpreted easily. We evaluate ITransF on two benchmark datasets---WN18 and FB15k for knowledge base completion and obtains improvements on both the mean rank and Hits@10 metrics, over all baselines that do not use additional information.

* Accepted by ACL 2017. Minor update 

  Click for Model/Code and Paper
Breaking the Softmax Bottleneck: A High-Rank RNN Language Model

Mar 02, 2018
Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, William W. Cohen

We formulate language modeling as a matrix factorization problem, and show that the expressiveness of Softmax-based models (including the majority of neural language models) is limited by a Softmax bottleneck. Given that natural language is highly context-dependent, this further implies that in practice Softmax with distributed word embeddings does not have enough capacity to model natural language. We propose a simple and effective method to address this issue, and improve the state-of-the-art perplexities on Penn Treebank and WikiText-2 to 47.69 and 40.68 respectively. The proposed method also excels on the large-scale 1B Word dataset, outperforming the baseline by over 5.6 points in perplexity.

* ICLR Oral 2018 

  Click for Model/Code and Paper
Controllable Invariance through Adversarial Feature Learning

Jan 29, 2018
Qizhe Xie, Zihang Dai, Yulun Du, Eduard Hovy, Graham Neubig

Learning meaningful representations that maintain the content necessary for a particular task while filtering away detrimental variations is a problem of great interest in machine learning. In this paper, we tackle the problem of learning representations invariant to a specific factor or trait of data. The representation learning process is formulated as an adversarial minimax game. We analyze the optimal equilibrium of such a game and find that it amounts to maximizing the uncertainty of inferring the detrimental factor given the representation while maximizing the certainty of making task-specific predictions. On three benchmark tasks, namely fair and bias-free classification, language-independent generation, and lighting-independent image classification, we show that the proposed framework induces an invariant representation, and leads to better generalization evidenced by the improved performance.

* NIPS 2017 

  Click for Model/Code and Paper
Good Semi-supervised Learning that Requires a Bad GAN

Nov 03, 2017
Zihang Dai, Zhilin Yang, Fan Yang, William W. Cohen, Ruslan Salakhutdinov

Semi-supervised learning methods based on generative adversarial networks (GANs) obtained strong empirical results, but it is not clear 1) how the discriminator benefits from joint training with a generator, and 2) why good semi-supervised classification performance and a good generator cannot be obtained at the same time. Theoretically, we show that given the discriminator objective, good semisupervised learning indeed requires a bad generator, and propose the definition of a preferred generator. Empirically, we derive a novel formulation based on our analysis that substantially improves over feature matching GANs, obtaining state-of-the-art results on multiple benchmark datasets.

* NIPS 2017 camera ready 

  Click for Model/Code and Paper
Calibrating Energy-based Generative Adversarial Networks

Feb 24, 2017
Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard Hovy, Aaron Courville

In this paper, we propose to equip Generative Adversarial Networks with the ability to produce direct energy estimates for samples.Specifically, we propose a flexible adversarial training framework, and prove this framework not only ensures the generator converges to the true data distribution, but also enables the discriminator to retain the density information at the global optimal. We derive the analytic form of the induced solution, and analyze the properties. In order to make the proposed framework trainable in practice, we introduce two effective approximation techniques. Empirically, the experiment results closely match our theoretical analysis, verifying the discriminator is able to recover the energy of data distribution.

* ICLR 2017 camera ready 

  Click for Model/Code and Paper
XLNet: Generalized Autoregressive Pretraining for Language Understanding

Jun 19, 2019
Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

* Pretrained models and code are available at https://github.com/zihangdai/xlnet 

  Click for Model/Code and Paper
Unsupervised Data Augmentation

Apr 29, 2019
Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, Quoc V. Le

Despite its success, deep learning still needs large labeled datasets to succeed. Data augmentation has shown much promise in alleviating the need for more labeled data, but it so far has mostly been applied in supervised settings and achieved limited gains. In this work, we propose to apply data augmentation to unlabeled data in a semi-supervised learning setting. Our method, named Unsupervised Data Augmentation or UDA, encourages the model predictions to be consistent between an unlabeled example and an augmented unlabeled example. Unlike previous methods that use random noise such as Gaussian noise or dropout noise, UDA has a small twist in that it makes use of harder and more realistic noise generated by state-of-the-art data augmentation methods. This small twist leads to substantial improvements on six language tasks and three vision tasks even when the labeled set is extremely small. For example, on the IMDb text classification dataset, with only 20 labeled examples, UDA outperforms the state-of-the-art model trained on 25,000 labeled examples. On standard semi-supervised learning benchmarks, CIFAR-10 with 4,000 examples and SVHN with 1,000 examples, UDA outperforms all previous approaches and reduces more than $30\%$ of the error rates of state-of-the-art methods: going from 7.66% to 5.27% and from 3.53% to 2.46% respectively. UDA also works well on datasets that have a lot of labeled data. For example, on ImageNet, with 1.3M extra unlabeled data, UDA improves the top-1/top-5 accuracy from 78.28/94.36% to 79.04/94.45% when compared to AutoAugment.


  Click for Model/Code and Paper
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Jan 18, 2019
Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov

Transformer networks have a potential of learning longer-term dependency, but are limited by a fixed-length context in the setting of language modeling. As a solution, we propose a novel neural architecture, Transformer-XL, that enables Transformer to learn dependency beyond a fixed length without disrupting temporal coherence. Concretely, it consists of a segment-level recurrence mechanism and a novel positional encoding scheme. Our method not only enables capturing longer-term dependency, but also resolves the problem of context fragmentation. As a result, Transformer-XL learns dependency that is about 80% longer than RNNs and 450% longer than vanilla Transformers, achieves better performance on both short and long sequences, and is up to 1,800+ times faster than vanilla Transformer during evaluation. Additionally, we improve the state-of-the-art (SoTA) results of bpc/perplexity from 1.06 to 0.99 on enwiki8, from 1.13 to 1.08 on text8, from 20.5 to 18.3 on WikiText-103, from 23.7 to 21.8 on One Billion Word, and from 55.3 to 54.5 on Penn Treebank (without finetuning). Our code, pretrained models, and hyperparameters are available in both Tensorflow and PyTorch.

* Code and pretrained models are available at https://github.com/kimiyoung/transformer-xl 

  Click for Model/Code and Paper
A Mutual Information Maximization Perspective of Language Representation Learning

Oct 18, 2019
Lingpeng Kong, Cyprien de Masson d'Autume, Wang Ling, Lei Yu, Zihang Dai, Dani Yogatama

We show state-of-the-art word representation learning methods maximize an objective function that is a lower bound on the mutual information between different parts of a word sequence (i.e., a sentence). Our formulation provides an alternative perspective that unifies classical word embedding models (e.g., Skip-gram) and modern contextual embeddings (e.g., BERT, XLNet). In addition to enhancing our theoretical understanding of these methods, our derivation leads to a principled framework that can be used to construct new self-supervised tasks. We provide an example by drawing inspirations from related methods based on mutual information maximization that have been successful in computer vision, and introduce a simple self-supervised objective that maximizes the mutual information between a global sentence representation and n-grams in the sentence. Our analysis offers a holistic view of representation learning methods to transfer knowledge and translate progress across multiple domains (e.g., natural language processing, computer vision, audio processing).

* 12 pages, 3 figures 

  Click for Model/Code and Paper