Artificial intelligence (AI) has undergone a renaissance recently, making major progress in key domains such as vision, language, control, and decision-making. This has been due, in part, to cheap data and cheap compute resources, which have fit the natural strengths of deep learning. However, many defining characteristics of human intelligence, which developed under much different pressures, remain out of reach for current approaches. In particular, generalizing beyond one's experiences--a hallmark of human intelligence from infancy--remains a formidable challenge for modern AI. The following is part position paper, part review, and part unification. We argue that combinatorial generalization must be a top priority for AI to achieve human-like abilities, and that structured representations and computations are key to realizing this objective. Just as biology uses nature and nurture cooperatively, we reject the false choice between "hand-engineering" and "end-to-end" learning, and instead advocate for an approach which benefits from their complementary strengths. We explore how using relational inductive biases within deep learning architectures can facilitate learning about entities, relations, and rules for composing them. We present a new building block for the AI toolkit with a strong relational inductive bias--the graph network--which generalizes and extends various approaches for neural networks that operate on graphs, and provides a straightforward interface for manipulating structured knowledge and producing structured behaviors. We discuss how graph networks can support relational reasoning and combinatorial generalization, laying the foundation for more sophisticated, interpretable, and flexible patterns of reasoning. Click to Read Paper
By providing a simple and efficient way of computing low-variance gradients of continuous random variables, the reparameterization trick has become the technique of choice for training a variety of latent variable models. However, it is not applicable to a number of important continuous distributions. We introduce an alternative approach to computing reparameterization gradients based on implicit differentiation and demonstrate its broader applicability by applying it to Gamma, Beta, Dirichlet, and von Mises distributions, which cannot be used with the classic reparameterization trick. Our experiments show that the proposed approach is faster and more accurate than the existing gradient estimators for these distributions. Click to Read Paper
SmoothGrad and VarGrad are techniques that enhance the empirical quality of standard saliency maps by adding noise to input. However, there were few works that provide a rigorous theoretical interpretation of those methods. We analytically formalize the result of these noise-adding methods. As a result, we observe two interesting results from the existing noise-adding methods. First, SmoothGrad does not make the gradient of the score function smooth. Second, VarGrad is independent of the gradient of the score function. We believe that our findings provide a clue to reveal the relationship between local explanation methods of deep neural networks and higher-order partial derivatives of the score function. Click to Read Paper
We propose a memory augmented neural network to perform text normalization i.e. the transformation of words from the written to the spoken form. With the addition of dynamic memory access and storage mechanism, we present an architecture that will serve as a language agnostic text normalization system while avoiding the kind of silly errors made by the LSTM based recurrent neural architectures. By reducing the number of unacceptable mistakes, we show that such a novel architecture is indeed a better alternative. Our proposed system requires significantly lesser amounts of data, training time and compute resources. However, some occurrences of errors still remain in certain semiotic classes. Nevertheless, we demonstrate that memory augmented networks with meta-learning capabilities can open many doors to a superior text normalization system. Click to Read Paper
Dance Dance Revolution (DDR) is a popular rhythm-based video game. Players perform steps on a dance platform in synchronization with music as directed by on-screen step charts. While many step charts are available in standardized packs, players may grow tired of existing charts, or wish to dance to a song for which no chart exists. We introduce the task of learning to choreograph. Given a raw audio track, the goal is to produce a new step chart. This task decomposes naturally into two subtasks: deciding when to place steps and deciding which steps to select. For the step placement task, we combine recurrent and convolutional neural networks to ingest spectrograms of low-level audio features to predict steps, conditioned on chart difficulty. For step selection, we present a conditional LSTM generative model that substantially outperforms n-gram and fixed-window approaches. Click to Read Paper
We introduce autoregressive implicit quantile networks (AIQN), a fundamentally different approach to generative modeling than those commonly used, that implicitly captures the distribution using quantile regression. AIQN is able to achieve superior perceptual quality and improvements in evaluation metrics, without incurring a loss of sample diversity. The method can be applied to many existing models and architectures. In this work we extend the PixelCNN model with AIQN and demonstrate results on CIFAR-10 and ImageNet using Inception score, FID, non-cherry-picked samples, and inpainting results. We consistently observe that AIQN yields a highly stable algorithm that improves perceptual quality while maintaining a highly diverse distribution. Click to Read Paper
We explore story generation: creative systems that can build coherent and fluent passages of text about a topic. We collect a large dataset of 300K human-written stories paired with writing prompts from an online forum. Our dataset enables hierarchical story generation, where the model first generates a premise, and then transforms it into a passage of text. We gain further improvements with a novel form of model fusion that improves the relevance of the story to the prompt, and adding a new gated multi-scale self-attention mechanism to model long-range context. Experiments show large improvements over strong baselines on both automated and human evaluations. Human judges prefer stories generated by our approach to those from a strong non-hierarchical model by a factor of two to one. Click to Read Paper
Learning to infer Bayesian posterior from a few-shot dataset is an important step towards robust meta-learning due to the model uncertainty inherent in the problem. In this paper, we propose a novel Bayesian model-agnostic meta-learning method. The proposed method combines scalable gradient-based meta-learning with nonparametric variational inference in a principled probabilistic framework. During fast adaptation, the method is capable of learning complex uncertainty structure beyond a point estimate or a simple Gaussian approximation. In addition, a robust Bayesian meta-update mechanism with a new meta-loss prevents overfitting during meta-update. Remaining an efficient gradient-based meta-learner, the method is also model-agnostic and simple to implement. Experiment results show the accuracy and robustness of the proposed method in various tasks: sinusoidal regression, image classification, active learning, and reinforcement learning. Click to Read Paper
In this work, we use a deep learning framework for simultaneous classification and regression of Parkinson disease diagnosis based on MR-Images and personal information (i.e. age, gender). We intend to facilitate and increase the confidence in Parkinson disease diagnosis through our deep learning framework. Click to Read Paper