Top papers that people are talking about right now
We present a neurosymbolic approach to the lifelong learning of algorithmic tasks that mix perception and procedural reasoning. Reusing highlevel concepts across domains and learning complex procedures are two key challenges in lifelong learning. We show that a combination of gradientbased learning and symbolic program synthesis can be a more effective response to these challenges than purely neural methods. Concretely, our approach, called HOUDINI, represents neural networks as strongly typed, end-to-end differentiable functional programs that use symbolic higher-order combinators to compose a library of neural functions. Our learning algorithm consists of: (1) a program synthesizer that performs a type-directed search over programs in this language, and decides on the library functions that should be reused and the architectures that should be used to combine them; and (2) a neural module that trains synthesized programs using stochastic gradient descent. We evaluate our approach on three algorithmic tasks. Our experiments show that our type-directed search technique is able to significantly prune the search space of programs, and that the overall approach transfers high-level concepts more effectively than monolithic neural networks as well as traditional transfer learning. Click to Read Paper
Recently, with the revolutionary neural style transferring methods, creditable paintings can be synthesized automatically from content images and style images. However, when it comes to the task of applying a painting's style to an anime sketch, these methods will just randomly colorize sketch lines as outputs and fail in the main task: specific style tranfer. In this paper, we integrated residual U-net to apply the style to the gray-scale sketch with auxiliary classifier generative adversarial network (AC-GAN). The whole process is automatic and fast, and the results are creditable in the quality of art style as well as colorization. Click to Read Paper
Current state-of-the-art machine translation systems are based on encoder-decoder architectures, that first encode the input sequence, and then generate an output sequence based on the input encoding. Both are interfaced with an attention mechanism that recombines a fixed encoding of the source tokens based on the decoder state. We propose an alternative approach which instead relies on a single 2D convolutional neural network across both sequences. Each layer of our network re-codes source tokens on the basis of the output sequence produced so far. Attention-like properties are therefore pervasive throughout the network. Our model yields excellent results, outperforming state-of-the-art encoder-decoder systems, while being conceptually simpler and having fewer parameters. Click to Read Paper
Prediction is arguably one of the most basic functions of an intelligent system. In general, the problem of predicting events in the future or between two waypoints is exceedingly difficult. However, most phenomena naturally pass through relatively predictable bottlenecks---while we cannot predict the precise trajectory of a robot arm between being at rest and holding an object up, we can be certain that it must have picked the object up. To exploit this, we decouple visual prediction from a rigid notion of time. While conventional approaches predict frames at regularly spaced temporal intervals, our time-agnostic predictors (TAP) are not tied to specific times so that they may instead discover predictable "bottleneck" frames no matter when they occur. We evaluate our approach for future and intermediate frame prediction across three robotic manipulation tasks. Our predictions are not only of higher visual quality, but also correspond to coherent semantic subgoals in temporally extended tasks. Project website: Click to Read Paper
Recent advances in Deep Reinforcement Learning and Robotics have been driven by the presence of increasingly realistic and complex simulation environments. Many of the existing platforms, however, provide either unrealistic visuals, inaccurate physics, low task complexity, or a limited capacity for interaction among artificial agents. Furthermore, many platforms lack the ability to flexibly configure the simulation, hence turning the simulation environment into a black-box from the perspective of the learning system. Here we describe a new open source toolkit for creating and interacting with simulation environments using the Unity platform: Unity ML-Agents Toolkit. By taking advantage of Unity as a simulation platform, the toolkit enables the development of learning environments which are rich in sensory and physical complexity, provide compelling cognitive challenges, and support dynamic multi-agent interaction. We detail the platform design, communication protocol, set of example environments, and variety of training scenarios made possible via the toolkit. Click to Read Paper
The use of iris as a biometric trait is widely used because of its high level of distinction and uniqueness. Nowadays, one of the major research challenges relies on the recognition of iris images obtained in visible spectrum under unconstrained environments. In this scenario, the acquired iris are affected by capture distance, rotation, blur, motion blur, low contrast and specular reflection, creating noises that disturb the iris recognition systems. Besides delineating the iris region, usually preprocessing techniques such as normalization and segmentation of noisy iris images are employed to minimize these problems. But these techniques inevitably run into some errors. In this context, we propose the use of deep representations, more specifically, architectures based on VGG and ResNet-50 networks, for dealing with the images using (and not) iris segmentation and normalization. We use transfer learning from the face domain and also propose a specific data augmentation technique for iris images. Our results show that the approach using non-normalized and only circle-delimited iris images reaches a new state of the art in the official protocol of the NICE.II competition, a subset of the UBIRIS database, one of the most challenging databases on unconstrained environments, reporting an average Equal Error Rate (EER) of 13.98% which represents an absolute reduction of about 5%. Click to Read Paper
We present QuAC, a dataset for Question Answering in Context that contains 14K information-seeking QA dialogs (100K questions in total). The dialogs involve two crowd workers: (1) a student who poses a sequence of freeform questions to learn as much as possible about a hidden Wikipedia text, and (2) a teacher who answers the questions by providing short excerpts from the text. QuAC introduces challenges not found in existing machine comprehension datasets: its questions are often more open-ended, unanswerable, or only meaningful within the dialog context, as we show in a detailed qualitative evaluation. We also report results for a number of reference models, including a recently state-of-the-art reading comprehension architecture extended to model dialog context. Our best model underperforms humans by 20 F1, suggesting that there is significant room for future work on this data. Dataset, baseline, and leaderboard available at Click to Read Paper
Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most. Click to Read Paper
Depth estimation is of critical interest for scene understanding and accurate 3D reconstruction. Most recent approaches in depth estimation with deep learning exploit geometrical structures of standard sharp images to predict corresponding depth maps. However, cameras can also produce images with defocus blur depending on the depth of the objects and camera settings. Hence, these features may represent an important hint for learning to predict depth. In this paper, we propose a full system for single-image depth prediction in the wild using depth-from-defocus and neural networks. We carry out thorough experiments to test deep convolutional networks on real and simulated defocused images using a realistic model of blur variation with respect to depth. We also investigate the influence of blur on depth prediction observing model uncertainty with a Bayesian neural network approach. From these studies, we show that out-of-focus blur greatly improves the depth-prediction network performances. Furthermore, we transfer the ability learned on a synthetic, indoor dataset to real, indoor and outdoor images. For this purpose, we present a new dataset containing real all-focus and defocused images from a Digital Single-Lens Reflex (DSLR) camera, paired with ground truth depth maps obtained with an active 3D sensor for indoor scenes. The proposed approach is successfully validated on both this new dataset and standard ones as NYUv2 or Depth-in-the-Wild. Code and new datasets are available at Click to Read Paper
This study considers the task of machine reading at scale (MRS) wherein, given a question, a system first performs the information retrieval (IR) task of finding relevant passages in a knowledge source and then carries out the reading comprehension (RC) task of extracting an answer span from the passages. Previous MRS studies, in which the IR component was trained without considering answer spans, struggled to accurately find a small number of relevant passages from a large set of passages. In this paper, we propose a simple and effective approach that incorporates the IR and RC tasks by using supervised multi-task learning in order that the IR component can be trained by considering answer spans. Experimental results on the standard benchmark, answering SQuAD questions using the full Wikipedia as the knowledge source, showed that our model achieved state-of-the-art performance. Moreover, we thoroughly evaluated the individual contributions of our model components with our new Japanese dataset and SQuAD. The results showed significant improvements in the IR task and provided a new perspective on IR for RC: it is effective to teach which part of the passage answers the question rather than to give only a relevance score to the whole passage. Click to Read Paper