Top papers that people are talking about right now
Collaborative reasoning for understanding each image-question pair is very critical but underexplored for an interpretable visual question answering system. Although very recent works also attempted to use explicit compositional processes to assemble multiple subtasks embedded in the questions, their models heavily rely on annotations or handcrafted rules to obtain valid reasoning processes, leading to either heavy workloads or poor performance on composition reasoning. In this paper, to better align image and language domains in diverse and unrestricted cases, we propose a novel neural network model that performs global reasoning on a dependency tree parsed from the question, and we thus phrase our model as parse-tree-guided reasoning network (PTGRN). This network consists of three collaborative modules: i) an attention module to exploit the local visual evidence for each word parsed from the question, ii) a gated residual composition module to compose the previously mined evidence, and iii) a parse-tree-guided propagation module to pass the mined evidence along the parse tree. Our PTGRN is thus capable of building an interpretable VQA system that gradually derives the image cues following a question-driven parse-tree reasoning route. Experiments on relational datasets demonstrate the superiority of our PTGRN over current state-of-the-art VQA methods, and the visualization results highlight the explainable capability of our reasoning system. Click to Read Paper
We present a deep model that can accurately produce dense depth maps given an RGB image with known depth at a very sparse set of pixels. The model works simultaneously for both indoor/outdoor scenes and produces state-of-the-art dense depth maps at nearly real-time speeds on both the NYUv2 and KITTI datasets. We surpass the state-of-the-art for monocular depth estimation even with depth values for only 1 out of every ~10000 image pixels, and we outperform other sparse-to-dense depth methods at all sparsity levels. With depth values for 1/256 of the image pixels, we achieve a mean absolute error of less than 1% of actual depth on indoor scenes, comparable to the performance of consumer-grade depth sensor hardware. Our experiments demonstrate that it would indeed be possible to efficiently transform sparse depth measurements obtained using e.g. lower-power depth sensors or SLAM systems into high-quality dense depth maps. Click to Read Paper
Current dialogue systems are not very engaging for users, especially when trained end-to-end without relying on proactive reengaging scripted strategies. Zhang et al. (2018) showed that the engagement level of end-to-end dialogue models increases when conditioning them on text personas providing some personalized back-story to the model. However, the dataset used in Zhang et al. (2018) is synthetic and of limited size as it contains around 1k different personas. In this paper we introduce a new dataset providing 5 million personas and 700 million persona-based dialogues. Our experiments show that, at this scale, training using personas still improves the performance of end-to-end systems. In addition, we show that other tasks benefit from the wide coverage of our dataset by fine-tuning our model on the data from Zhang et al. (2018) and achieving state-of-the-art results. Click to Read Paper
We present QuAC, a dataset for Question Answering in Context that contains 14K information-seeking QA dialogs (100K questions in total). The dialogs involve two crowd workers: (1) a student who poses a sequence of freeform questions to learn as much as possible about a hidden Wikipedia text, and (2) a teacher who answers the questions by providing short excerpts from the text. QuAC introduces challenges not found in existing machine comprehension datasets: its questions are often more open-ended, unanswerable, or only meaningful within the dialog context, as we show in a detailed qualitative evaluation. We also report results for a number of reference models, including a recently state-of-the-art reading comprehension architecture extended to model dialog context. Our best model underperforms humans by 20 F1, suggesting that there is significant room for future work on this data. Dataset, baseline, and leaderboard available at Click to Read Paper
This paper explores the use of deep reinforcement learning agents to transfer knowledge from one environment to another. More specifically, the method takes advantage of asynchronous advantage actor critic (A3C) architecture to generalize a target game using an agent trained on a source game in Atari. Instead of fine-tuning a pre-trained model for the target game, we propose a learning approach to update the model using multiple agents trained in parallel with different representations of the target game. Visual mapping between video sequences of transfer pairs is used to derive new representations of the target game; training on these visual representations of the target game improves model updates in terms of performance, data efficiency and stability. In order to demonstrate the functionality of the architecture, Atari games Pong-v0 and Breakout-v0 are being used from the OpenAI gym environment; as the source and target environment. Click to Read Paper
Procedural content generation via machine learning (PCGML) is typically framed as the task of fitting a generative model to full-scale examples of a desired content distribution. This approach presents a fundamental tension: the more design effort expended to produce detailed training examples for shaping a generator, the lower the return on investment from applying PCGML in the first place. In response, we propose the use of discriminative models (which capture the validity of a design rather the distribution of the content) trained on positive and negative examples. Through a modest modification of WaveFunctionCollapse, a commercially-adopted PCG approach that we characterize as using elementary machine learning, we demonstrate a new mode of control for learning-based generators. We demonstrate how an artist might craft a focused set of additional positive and negative examples by critique of the generator's previous outputs. This interaction mode bridges PCGML with mixed-initiative design assistance tools by working with a machine to define a space of valid designs rather than just one new design. Click to Read Paper
Multi-hop reasoning is an effective approach for query answering (QA) over incomplete knowledge graphs (KGs). The problem can be formulated in a reinforcement learning (RL) setup, where a policy-based agent sequentially extends its inference path until it reaches a target. However, in an incomplete KG environment, the agent receives low-quality rewards corrupted by false negatives in the training data, which harms generalization at test time. Furthermore, since no golden action sequence is used for training, the agent can be misled by spurious search trajectories that incidentally lead to the correct answer. We propose two modeling advances to address both issues: (1) we reduce the impact of false negative supervision by adopting a pretrained one-hop embedding model to estimate the reward of unobserved facts; (2) we counter the sensitivity to spurious paths of on-policy RL by forcing the agent to explore a diverse set of paths using randomly generated edge masks. Our approach significantly improves over existing path-based KGQA models on several benchmark datasets and is comparable or better than embedding-based models. Click to Read Paper
Vision science, particularly machine vision, has been revolutionized by introducing large-scale image datasets and statistical learning approaches. Yet, human neuroimaging studies of visual perception still rely on small numbers of images (around 100) due to time-constrained experimental procedures. To apply statistical learning approaches that integrate neuroscience, the number of images used in neuroimaging must be significantly increased. We present BOLD5000, a human functional MRI (fMRI) study that includes almost 5,000 distinct images depicting real-world scenes. Beyond dramatically increasing image dataset size relative to prior fMRI studies, BOLD5000 also accounts for image diversity, overlapping with standard computer vision datasets by incorporating images from the Scene UNderstanding (SUN), Common Objects in Context (COCO), and ImageNet datasets. The scale and diversity of these image datasets, combined with a slow event-related fMRI design, enable fine-grained exploration into the neural representation of a wide range of visual features, categories, and semantics. Concurrently, BOLD5000 brings us closer to realizing Marr's dream of a singular vision science - the intertwined study of biological and computer vision. Click to Read Paper
Neural network-based methods for image processing are becoming widely used in practical applications. Modern neural networks are computationally expensive and require specialized hardware, such as graphics processing units. Since such hardware is not always available in real life applications, there is a compelling need for the design of neural networks for mobile devices. Mobile neural networks typically have reduced number of parameters and require a relatively small number of arithmetic operations. However, they usually still are executed at the software level and use floating-point calculations. The use of mobile networks without further optimization may not provide sufficient performance when high processing speed is required, for example, in real-time video processing (30 frames per second). In this study, we suggest optimizations to speed up computations in order to efficiently use already trained neural networks on a mobile device. Specifically, we propose an approach for speeding up neural networks by moving computation from software to hardware and by using fixed-point calculations instead of floating-point. We propose a number of methods for neural network architecture design to improve the performance with fixed-point calculations. We also show an example of how existing datasets can be modified and adapted for the recognition task in hand. Finally, we present the design and the implementation of a floating-point gate array-based device to solve the practical problem of real-time handwritten digit classification from mobile camera video feed. Click to Read Paper
Unsupervised learning of syntactic structure is typically performed using generative models with discrete latent variables and multinomial parameters. In most cases, these models have not leveraged continuous word representations. In this work, we propose a novel generative model that jointly learns discrete syntactic structure and continuous word representations in an unsupervised fashion by cascading an invertible neural network with a structured generative prior. We show that the invertibility condition allows for efficient exact inference and marginal likelihood computation in our model so long as the prior is well-behaved. In experiments we instantiate our approach with both Markov and tree-structured priors, evaluating on two tasks: part-of-speech (POS) induction, and unsupervised dependency parsing without gold POS annotation. On the Penn Treebank, our Markov-structured model surpasses state-of-the-art results on POS induction. Similarly, we find that our tree-structured model achieves state-of-the-art performance on unsupervised dependency parsing for the difficult training condition where neither gold POS annotation nor punctuation-based constraints are available. Click to Read Paper