Alert button
Picture for Steve Furber

Steve Furber

Alert button

NeuroBench: Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking

Add code
Bookmark button
Alert button
Apr 15, 2023
Jason Yik, Soikat Hasan Ahmed, Zergham Ahmed, Brian Anderson, Andreas G. Andreou, Chiara Bartolozzi, Arindam Basu, Douwe den Blanken, Petrut Bogdan, Sander Bohte, Younes Bouhadjar, Sonia Buckley, Gert Cauwenberghs, Federico Corradi, Guido de Croon, Andreea Danielescu, Anurag Daram, Mike Davies, Yigit Demirag, Jason Eshraghian, Jeremy Forest, Steve Furber, Michael Furlong, Aditya Gilra, Giacomo Indiveri, Siddharth Joshi, Vedant Karia, Lyes Khacef, James C. Knight, Laura Kriener, Rajkumar Kubendran, Dhireesha Kudithipudi, Gregor Lenz, Rajit Manohar, Christian Mayr, Konstantinos Michmizos, Dylan Muir, Emre Neftci, Thomas Nowotny, Fabrizio Ottati, Ayca Ozcelikkale, Noah Pacik-Nelson, Priyadarshini Panda, Sun Pao-Sheng, Melika Payvand, Christian Pehle, Mihai A. Petrovici, Christoph Posch, Alpha Renner, Yulia Sandamirskaya, Clemens JS Schaefer, André van Schaik, Johannes Schemmel, Catherine Schuman, Jae-sun Seo, Sadique Sheik, Sumit Bam Shrestha, Manolis Sifalakis, Amos Sironi, Kenneth Stewart, Terrence C. Stewart, Philipp Stratmann, Guangzhi Tang, Jonathan Timcheck, Marian Verhelst, Craig M. Vineyard, Bernhard Vogginger, Amirreza Yousefzadeh, Biyan Zhou, Fatima Tuz Zohora, Charlotte Frenkel, Vijay Janapa Reddi

Figure 1 for NeuroBench: Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking
Viaarxiv icon

Unleashing the Potential of Spiking Neural Networks by Dynamic Confidence

Add code
Bookmark button
Alert button
Mar 26, 2023
Chen Li, Edward Jones, Steve Furber

Figure 1 for Unleashing the Potential of Spiking Neural Networks by Dynamic Confidence
Figure 2 for Unleashing the Potential of Spiking Neural Networks by Dynamic Confidence
Figure 3 for Unleashing the Potential of Spiking Neural Networks by Dynamic Confidence
Figure 4 for Unleashing the Potential of Spiking Neural Networks by Dynamic Confidence
Viaarxiv icon

An FPGA Implementation of Convolutional Spiking Neural Networks for Radioisotope Identification

Add code
Bookmark button
Alert button
Feb 24, 2021
Xiaoyu Huang, Edward Jones, Siru Zhang, Shouyu Xie, Steve Furber, Yannis Goulermas, Edward Marsden, Ian Baistow, Srinjoy Mitra, Alister Hamilton

Figure 1 for An FPGA Implementation of Convolutional Spiking Neural Networks for Radioisotope Identification
Figure 2 for An FPGA Implementation of Convolutional Spiking Neural Networks for Radioisotope Identification
Figure 3 for An FPGA Implementation of Convolutional Spiking Neural Networks for Radioisotope Identification
Figure 4 for An FPGA Implementation of Convolutional Spiking Neural Networks for Radioisotope Identification
Viaarxiv icon

Low-Power Low-Latency Keyword Spotting and Adaptive Control with a SpiNNaker 2 Prototype and Comparison with Loihi

Add code
Bookmark button
Alert button
Sep 18, 2020
Yexin Yan, Terrence C. Stewart, Xuan Choo, Bernhard Vogginger, Johannes Partzsch, Sebastian Hoeppner, Florian Kelber, Chris Eliasmith, Steve Furber, Christian Mayr

Figure 1 for Low-Power Low-Latency Keyword Spotting and Adaptive Control with a SpiNNaker 2 Prototype and Comparison with Loihi
Figure 2 for Low-Power Low-Latency Keyword Spotting and Adaptive Control with a SpiNNaker 2 Prototype and Comparison with Loihi
Figure 3 for Low-Power Low-Latency Keyword Spotting and Adaptive Control with a SpiNNaker 2 Prototype and Comparison with Loihi
Figure 4 for Low-Power Low-Latency Keyword Spotting and Adaptive Control with a SpiNNaker 2 Prototype and Comparison with Loihi
Viaarxiv icon

ATIS + SpiNNaker: a Fully Event-based Visual Tracking Demonstration

Add code
Bookmark button
Alert button
Dec 03, 2019
Arren Glover, Alan B. Stokes, Steve Furber, Chiara Bartolozzi

Figure 1 for ATIS + SpiNNaker: a Fully Event-based Visual Tracking Demonstration
Figure 2 for ATIS + SpiNNaker: a Fully Event-based Visual Tracking Demonstration
Viaarxiv icon

Dynamic Power Management for Neuromorphic Many-Core Systems

Add code
Bookmark button
Alert button
Mar 21, 2019
Sebastian Hoeppner, Bernhard Vogginger, Yexin Yan, Andreas Dixius, Stefan Scholze, Johannes Partzsch, Felix Neumaerker, Stephan Hartmann, Stefan Schiefer, Georg Ellguth, Love Cederstroem, Luis Plana, Jim Garside, Steve Furber, Christian Mayr

Figure 1 for Dynamic Power Management for Neuromorphic Many-Core Systems
Figure 2 for Dynamic Power Management for Neuromorphic Many-Core Systems
Figure 3 for Dynamic Power Management for Neuromorphic Many-Core Systems
Figure 4 for Dynamic Power Management for Neuromorphic Many-Core Systems
Viaarxiv icon

Efficient Reward-Based Structural Plasticity on a SpiNNaker 2 Prototype

Add code
Bookmark button
Alert button
Mar 20, 2019
Yexin Yan, David Kappel, Felix Neumaerker, Johannes Partzsch, Bernhard Vogginger, Sebastian Hoeppner, Steve Furber, Wolfgang Maass, Robert Legenstein, Christian Mayr

Figure 1 for Efficient Reward-Based Structural Plasticity on a SpiNNaker 2 Prototype
Figure 2 for Efficient Reward-Based Structural Plasticity on a SpiNNaker 2 Prototype
Figure 3 for Efficient Reward-Based Structural Plasticity on a SpiNNaker 2 Prototype
Figure 4 for Efficient Reward-Based Structural Plasticity on a SpiNNaker 2 Prototype
Viaarxiv icon

SLAMBench2: Multi-Objective Head-to-Head Benchmarking for Visual SLAM

Add code
Bookmark button
Alert button
Aug 21, 2018
Bruno Bodin, Harry Wagstaff, Sajad Saeedi, Luigi Nardi, Emanuele Vespa, John H Mayer, Andy Nisbet, Mikel Luján, Steve Furber, Andrew J Davison, Paul H. J. Kelly, Michael O'Boyle

Figure 1 for SLAMBench2: Multi-Objective Head-to-Head Benchmarking for Visual SLAM
Figure 2 for SLAMBench2: Multi-Objective Head-to-Head Benchmarking for Visual SLAM
Figure 3 for SLAMBench2: Multi-Objective Head-to-Head Benchmarking for Visual SLAM
Figure 4 for SLAMBench2: Multi-Objective Head-to-Head Benchmarking for Visual SLAM
Viaarxiv icon